Matching Residents to Hospitals

- **Goal**: Given a set of preferences among hospitals and medical school students, design a self-reinforcing admissions process.
- **Unstable pair**: applicant x and hospital y are unstable if:
 - x prefers y to their assigned hospital.
 - y prefers x to one of its admitted students.
- **Stable assignment**: Assignment with no unstable pairs.
 - Natural and desirable condition.
 - Individual self-interest will prevent any applicant/hospital deal from being made.

Stable Matching Problem

- **Goal**: Given n men and n women, find a "suitable" matching.
 - Participants rate members of opposite sex.
 - Each man lists women in order of preference from best to worst.
 - Each woman lists men in order of preference from best to worst.

Ment's Preference Profile

<table>
<thead>
<tr>
<th>Favorite</th>
<th>Least Favorite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>Xavier</td>
<td>Amy</td>
</tr>
<tr>
<td>Yuri</td>
<td>Brenda</td>
</tr>
<tr>
<td>Zoran</td>
<td>Claire</td>
</tr>
</tbody>
</table>

Women's Preference Profile

<table>
<thead>
<tr>
<th>Favorite</th>
<th>Least Favorite</th>
<th>Favorite</th>
<th>Least Favorite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>2nd</td>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>Claire</td>
<td>Amy</td>
<td>Yuri</td>
<td>Xavier</td>
</tr>
<tr>
<td>Brenda</td>
<td>Claire</td>
<td>Zoran</td>
<td>Yuri</td>
</tr>
</tbody>
</table>

Stable Matching Problem

- **Perfect matching**: everyone is matched monogamously.
 - Each man gets exactly one woman.
 - Each woman gets exactly one man.
- **Stability**: no incentive for some pair of participants to undermine assignment by joint action.
 - In matching M, an unmatched pair $m-w$ is unstable if man m and woman w prefer each other to current partners.
 - Unstable pair $m-w$ could each improve by eloping.
- **Stable matching**: perfect matching with no unstable pairs.
- **Stable matching problem**: Given the preference lists of n men and n women, find a stable matching if one exists.

Q. Is assignment X-C, Y-B, Z-A stable?

- A. No. Brenda and Xavier will hook up.
Q. Is assignment X-A, Y-B, Z-C stable?
A. Yes.

Stable Matching Problem

- Favorite least favorite favorite least favorite favorite
- Xavier Amy Brenda Claire
- Yuri Amy Brenda Claire
- Zoran Amy Brenda Claire

Stable Roommate Problem

Q. Do stable matchings always exist?
A. Not obvious a priori.

Propose-And-Reject Algorithm

- Propose-and-reject algorithm. [Gale-Shapley 1962]
- Intuitive method that guarantees to find a stable matching.
- Initialize each person to free.
- while [some man is free and hasn’t proposed to every woman] {
 Choose such a man m:
 W = [second woman on m’s list to whom m has not yet proposed if m is free]
 assign m and W to be engaged
 else if (W prefers m to her fiancé M):
 assign m and W to be engaged, and M to be free
 else:
 M rejects M
}

Proof of Correctness: Termination

- Observation 1. Men propose to women in decreasing order of preference.
- Observation 2. Once a woman is matched, she never becomes unmatched; she only “trades up.”
- Claim. Algorithm terminates after at most \(n^2 \) iterations of while loop.
- There are only \(n^2 \) possible proposals.

Proof of Correctness: Perfection

- Claim. All men and women get matched.
- Proof. (by contradiction)
 - Suppose, for sake of contradiction, that Zoran is not matched upon termination of algorithm.
 - Then some woman, say Amy, is not matched upon termination.
 - By Observation 2 (only trading up, never becoming unmatched), Amy was never proposed to.
 - But, Zoran proposes to everyone, since he ends up unmatched.

Proof of Correctness: Stability

- Claim. No unstable pairs.
- Proof. (by contradiction)
 - Suppose A-Z is an unstable pair; each prefers each other to partner in Gale-Shapley matching \(S^* \).
 - Case 1: Z never proposed to A.
 - Z prefers his GS partner to A.
 - A-Z is stable.
 - Case 2: Z proposed to A.
 - A rejected Z (right away or later)
 - A prefers her GS partner to Z.
 - A-Z is stable.
 - In either case A-Z is stable, a contradiction.
Summary

- Stable matching problem. Given n men and n women, and their preferences, find a stable matching if one exists.
- Gale-Shapley algorithm. Guarantees to find a stable matching for any problem instance.
- Q. How to implement GS algorithm efficiently?
- Q. If there are multiple stable matchings, which one does GS find?

Implementation for Stable Matching Algorithms

- Problem size
 - $N=2n^2$ words
 - $2n^2$ people each with a preference list of length n
- Brute force algorithm
 - Try all $n!$ possible matchings
 - Do any of them work?
- Gale-Shapley Algorithm
 - n^2 iterations, each costing constant time as follows:

Efficient Implementation

- Efficient implementation. We describe $O(n^2)$ time implementation.
- Representing men and women.
 - Assume men are named 1, ... n.
 - Assume women are named 1, ..., n.
- Engagements.
 - Maintain a list of free men, e.g., in a queue.
 - Maintain two arrays $wife[i]$, and $husband[w]$.
 - set entry to 0 if unmatched
 - if m matched to w then $wife[m]=w$ and $husband[w]=m$
- Men proposing.
 - For each man, maintain a list of women, ordered by preference.
 - Maintain an array $count[m]$ that counts the number of proposals made by man m.

Efficient Implementation

- Women rejecting/accepting.
 - Does woman w prefer m to man m'?
 - For each woman, create $inverse$ of preference list of men.
 - Constant time access for each query after $O(n)$ preprocessing.

Understanding the Solution

- Q. For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?

<table>
<thead>
<tr>
<th>5</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Mary</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>John</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

- An instance with two stable matchings.
 - A-X, B-Y, C-Z.
 - A-Y, B-X, C-Z.

Understanding the Solution

- Q. For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?
- Def. Man m is a valid partner of woman w if there exists some stable matching in which they are matched.
- Man-optimal assignment. Each man receives best valid partner (according to his preferences).
- Claim. All executions of GS yield a man-optimal assignment, which is a stable matching!
 - No reason to believe that man-optimal assignment is perfect, let alone stable.
 - Simultaneously best for each and every man.
Woman Pessimal Assignment. Each woman receives worst valid partner.

Claim. GS finds woman-pessimal stable matching S^*.

Proof. Suppose $A-Z$ matched in S^*, but Z is not worst valid partner for A.

There exists stable matching S in which A is paired with a man, say Y, whom she prefers to Z.

Let B be Z's partner in S.

In building S^*, when Y is rejected by A, thus Z prefers A to B.

Thus $A-Z$ is unstable in S.

Stable Matching Summary

- Stable matching problem. Given preference profiles of n men and n women, find a stable matching.
- Gale-Shapley algorithm. Finds a stable matching in $O(n^2)$ time.
- Man-optimality. In version of GS where men propose, each man receives best valid partner.
- Q. Does man-optimality come at the expense of the women?

Application: Matching Residents to Hospitals

NRMP. (National Resident Matching Program)
- Original use just after WWII.
- Ides of March, 23,000+ residents.

Rural hospital dilemma.
- Certain hospitals (mainly in rural areas) were unpopular and declared unacceptable by many residents.
- Rural hospitals were under-subscribed in NRMP matching.
- How can we find stable matching that benefits “rural hospitals”?

Rural Hospital Theorem. Rural hospitals get exactly same residents in every stable matching!

Lessons Learned

- Powerful ideas learned in course.
 - Isolate underlying structure of problem.
 - Create useful and efficient algorithms.

- Potentially deep social ramifications.