_CHAPTER 9

ALGEBRAIC AND NUMERICAL
ALGORITHMS

One plus one is two.

Two plus two Is four,

Four plus four is eight.

Eight plus eight is more than ten,

A child’s poem

.1 Introduction

thenever we perform an arithmetic operation, we are in fact executing an algorithm.
e are usually so familiar with these operations that we take the corresponding
gt_arithms for granted. However, whether it is multiplication, division, or a more
soriplicated arithmetic operation, the straightforward algorithm is not always the best
when very large numbers or large sequences of numbers are involved. The same
ienomenon that we have seen in the previous chapters occurs here as wel: Some
gorithms that are good for small input become inefficient when the size of the input

‘As we have done in previous chapters, we will measure the complexity of an
Jgorithm by the number of *‘operations’” that the algorithm executes. For the most part
#e will assume that basic arithmetic operations (such as addition, multiplication, and
ision) take one unit of time. This is a reasonable assamption when the operands can
:represented by one or two computer words {e.g., integers that are not too large,
ingle-precision or double-precision real numbers). There are cases, however, when the
serands are huge {e.g., 2000 digit integers). In such cases, we have to take into account

293

294 Algebraic and Numeric Algorithms 9.2 Exponentiation 295

the size of the operands, or at least to be aware that the basic operations are not simph
It is possible to design algorithms that look very efficient **on paper,”” but are in fact very
inefficient, because the sizes of the operands are ignored.

The meaning of the **size of the input’" is confusing sometimes. Given an integ
n on which we want to perform an arithmetic operation, it is natural to think of the val

Algorithm Power (n, k) ; [first attempr }
Input: #and k (two positive integers).
OQutput: P (the value of n¥).

n as the size of the input. However, this is contrary to our usual convention of using the begin

storage requirements of the input for defining its size. The distinction is very imporsant. Pi=n;

Adding two 100-digit numbers can be done quickly, even by hand. On the other hand; fori=1tok-1do
counting to & value represented by a 100-digit number cannot be done in reasonable tirms P=n*p

even by the fastest computer. Since a number n can be represented by [logan] bits, it end

size is defined as [logyn]. For example, an algorithm that requires O (log n) operations
when 1 is the input (for example, an algorithm for computing 2#) is considered linear
since O (logn) is a linear function of the size of the input, whereas an algorithm the
tequires 0(\5;) operations when n is the input (for example, factoring » by trying o
numbers less than or equal to \/; } is considered exponential. :
As usual, we concentrate in this chapter on interesting techniques for designing
algorithms. We first discuss how to compute powers of a given number. We thep
present what is probably the oldest known nontrivial algorithm: Euclid’s algorithm for
finding the greatest common divisor. It is quite amazing that modern computers use
2200-year old algorithm. We then discuss algorithms for polynomial multiplication an
matrix multiplication, and we end the chapter with one of the most important and most
beautiful algorithms - the fast Fourier transform. '

Figure 9.1 Algorithm Power.

nt=n? = Hnﬂ } J times.

ut what if k is not a power of 27 Consider again the reduction we just used. We started
ith two parameters # and &, and reduced the problem to a smaller one with n and £/2.
This reduction is not always valid since /2 may not be an integer. If £/2 is not an
_ieger, the reduced problem does not satisfy the conditions of the original problem. But
i k/2 is not an integer, then (k~1)/2 is an integer, and the following reduction is

appropriate:

2
ak=n [R(A~1m] ‘

We now have an algorithm, If k is even, we simply square the solution for k/2. If £ is
odd, we square the solution for (k—1)/2 and multiply by »n. The number of
multiplications is at most 2logy4. The algorithm is given in Fig. 9.2,

9.2 Exponentiation

We start with a basic arithmetic operation.

Complexity The number of multiplications is O(logk). As the algorithm
progresses, however, the numbers become larger. Therefore, the multiplications become
more costly. We leave it to the reader (Exercise 9.12) to analyze the complexity of this
_igorithm under a more realistic measure for the cost of the multiplications. We now
present an application of this algorithm in which the numbers do not grow during the
xecution of the algorithm.

The Probiem Given two positive integers n and &, compute n*.

We can easily reduce the problem to that of computing n*~!, since n*=p-n*
Therefore, the problem can be solved by induction on &, and the resulting straightforwaf&
algorithm is given in Fig. 9.1. We have reduced the value of k, but not its size. The
straightforward algorithm requires k iterations. Since the size of k is log, k, the number
interation is exponential in the size of k (k =2""*). This is not bad for very small valisy
of &, but it is unacceptable for large vahues of £,

Another way to reduce the problem is to use the fact that nt=(n¥y?, With this
observation, we reduce the problem to one with # and &/2. Reducing the value of k by
half corresponds to reducing its size by a constant. Thas, the number of multiplications
will be linear in the size of k. We now have the skeleton of the algorithm — repeated
squaring. The simplest case s for k=2 for some integer j:

An Application to Cryptography

The study of cryptography is beyond the scope of this book, and we discuss it briefly.
Encryption schemes usually rely on complete secrecy. Any two participants who want to
xchange Secrel messages fmust agree on the encryption—decryption algorithm and must
se secret keys known only to themselves. We want to avoid this need to exchange
secret keys between every pair of participants. The following is known as the RSA
public-key encryption scheme (after Rivest, Shamir, and Adleman [19781, who
developed it). The scheme can be used by a group of participants {e.g., computer users)

296 Algebraic and Numeric Algorithms 9.3 Euclid’s Algorithm 297

One can prove that (9.1) guarantees that Do(Ep(MY) =M, hence these are valid
“encryption and decryption functions. Both algorithms thus consist of computing only one
power (M? or %) and one division {for the congruence), although these operations are
performed on very large numbers. The modulo » operation can be applied at any step of
¢ algorithm, and not necessarily at the end. This is true because

Algorithm Pawer__bymRepeated_Squaring i k)
Input: nand & (two positive integers).
Output: P (the value of nt).

begin
ifk=1thenP :=n x-y(modn) = [x{modn)- y(modn) J(mod n),
else for all integers x, y, and n. Applying the modulo n operation in each step of the
2 i= Power_by Repeated Squaring (n, k div 2) ; computation is very important, since this way the values of the operands do not grow
fkmod 2 = then above n. If we use algorithm Power_by_Repeated-Squaring of Fig. 9.2, not only do we
Po=av fequire only O (loge) (or O (logd)) multiplications and divisions for computing the
tlse :power, but each mukiplication and division involves numbers that are less than n. We
P o= itz need 1o modify algorithm Power by Repeated-Squaring by only changing each
end

multiplication to a multiplication modulo . Thus, applying the RSA scheme requires
only O (log n) multiplications and divisions of numbers that are less than .

There is no known algorithm that can factor a very large number (e.g., of 1000
digits) in a reasonable time (e.g., our lifetime). Thus, the knowledge of the value of n
does not imply the knowledge of p and g. It is commonly believed (although there is no
known proof of this fact) that it is impossible to compute the function Dp efficiently
without the knowledge of any one of d, p, or ¢.' Therefore, by keeping d, p, and g secret,
P can receive encrypted messages from anyone without compromising the secrecy of the
messages, There are several other advantages of this scheme, which is called a public-
key cryptosystem.

Figure 9.2 Algorithm Power_by Repeated_Squaring.

who want to communicate by encrypted messages. Each participant has only two keys,
one for encryption and one for decryption (independent of the number of othet
participants). These keys are chosen as follows. A participant P in the RSA scheme
selects two very large prime numbers p and g and computes their product r = pq. He then
chooses another very large integer d, such that d and (p - 1){(g ~ 1) have no commos
divisor. (See the next section for an algorithm to verify that fact; if d is a random’
number, then the condition above is likely to occur.) From p, g, and d, it is possible
(although not easy) to compute the value of a number e that satisfies :

e-d=1(mod{p~1)g-1)). ©.1

As we shall see next, e will be the encryption key and d the decryption key. The values
of n and e are publicized by P in a central directory that everyone can read. (We assume
the availability of a trusted directory such that no other person can forge P's keys.) The
value of d, as well as the values of p and 4. which are not needed anymore, are kepe
secret by P. :
Let M be an integer that corresponds to a message that P wants to encrypt (every
message can be translated to a sequence of bits, which can be ranslated 1o an integer,
Assume that M is smaller than n; otherwise M can be broken into several small messages
each smaller than n. The encryption function Ep that P uses is very simple: '

Ep(M)=M* (modn).

8.3 Euclid’s Algorithm

The greatest common divisor of two positive infegers n and m, denoted by GCD{n, m),
i the unique positive integer & such that (I} & divides both » and m, and (2} all other
integers that divide both »n and m are smaller than k.

The Problem Find the greatest common divisor of two given posi-
tive integers.

As usual, we try to reduce the problem to one of smaller size. Can we somehow make »n
ot m smaller without changing the problem? Euclid noticed the obvicus positive answer:
if & divides both n and m, then it divides their difference! if n > m, then GCD{n, m) =

Since both n and e are made public, everyone can encrypt messages and send them to P GCD(n —m, m), and we now have a smaller problem. But, again, we reduced the values

The decryption function Dp is just as simple (but it can be performed only by P, since the
value of d is secret);

Dp(Cy=C? (mod).

* R is known that an algorithm for computing d from » and ¢ wouid iead to an efficient probabilistic algorithm
Bor factoring », which is a strong evidence that 4 cannot be compromised {see Bach, Miller, and Shailit [1986}).
Posentiatly, however, there may be another way to compute Dp without the knowledge of d.

298 Algebraic and Numeric Algorithms 9.4 Polynomial Multiplication 299

of the numbers in question, and not their sizes. For the algorithm to be efficient, we mgy

reduce the sizes. For example, if # is very large (say 1000 digits) and m =24, we wil The Problem Cempute the product of two given polynomials of de-

need to subtract 24 from r approximately #/24 times. This computation will take 0{ green—1.
steps, which is exponential in the size of n.
Let’s look at this algorithm again, We subtract m from » and apply the samnga
algorithm to n ~m and m. If n—m is still larger than m, we subtract m again. In othes
words, we keep subtracting m from n until the result becomes less than m. But this: PQ = [anxx"—l o +p0] [q,,wlx"“ 4o +q0] = (9.2)

exactly the same as dividing » by m and looking at the remainder. Division can be d

quickly. This leads directly to Euclid's algorithm, which is presented in Fig. 9.3. 2

_ Poct a3 724 [puwiq{-{-i +Pp-28isat T +Pf+|€iu—|])f"+i + T oG
Complexity We claim that Euclid's algorithm has linear running time in the size
n+m; specifically, its running time (counting each operation as one step independeént ;
the size of the operands) is O (log (n +m)). To prove this claim, it is sufficient to's
that the value of a is reduced by half in a constant number of iterations. Let’s look at
consecutive iterations of algorithm GCD. In the first iteration, a and b (a > b).
changed into b and a modb. Then, in the next iteration, they are changed into a mod
and b mod{a modb). So, in two iterations, the first number a is changed to 2 mod
But, since @ > b, we have a mod b < @/2, which establishes the claim. ;

We can compute the coefficients of PQ directly from (9.2). It is easy to see that, if we
follow ¢9.2), then the number of multiplications and additions will be O (n?). Can we do

tter? We have seen by now so many improvements of straightforward quadratic
gorithms that it is not surprising that the answer is positive. A complicated O (n logn)
grithm will be discussed in Section 9.6, But first, we describe a simple divide-and-
quer algorithm.

For simplicity, we assume that » is a power of 2. We divide each polynomial into
 equal-sized parts, Let P =P, +x"2 Py, and Q=0 +x"* Q,, where

12-1 =1

v PampundPuaa Xt P X ’

9.4 Polynomial Multiplication Pi=po+pix+ - +Puyax”

n1

Let P= 2 pix',and 0=F gx', be two polynomials of degree n—1. A pn!ynom&ﬁ
i =0 i=0

represented by its ordered list of coefficients.

i2-1 ni2-1

Qy=qo+gx+ - T, Qi=quatquaa it 0 T,

¢ now have
TPQ = (PP (Q + 02X = PO, (P Q2+ P2)x" + PoQyx

- expression for PQ now involves products of polynomials of degree n/2. We can
f pute the product of the smaller polynomials (e.g., P @) by induction, then add the
is to complete the solution. Can we use induction directly? The only constraints are
the smaller problems be exactly the same as the original problem, and that we know
to maltiply polynomials of degree 1. Both conditions are clearly satisfied. The total
ber of operations T(n) required for this algorithm is given by the following
ence relation:

Tny=4T{(W/2)+O(n), T(H=1

Algorithm GCD (m, nj
Input: m and n (two positive integers).
Qutput: ged (the ged of m and).

begin
a=max(n,m};
b:=minfn,m),
rom 1y
while r > O do { r is the remainder }
ri=amodb .

% -factor 4 comes from the 4 products of the smaller polynomials, and the O (n) comes
adding the smaller polynomials. The solution of this recurrence relation is oY

a:=b; Section 3.5.2), which means that we have not achieved any improvement (see
br=r: ise 9.4).
ged 1= a -To get an improvement to the quadratic algorithm we need to solve the problem by

end ing less than four subproblems. Consider the following multiplication table (the

on we use such an elaborate table for this simple notation will become apparent in the

Figure 9.3 Algorithm GCD. section).

300 Algebraic and Numeric Algorithms 9.5 Matrix Multiplication 301

3.5 Matrix Multiplication

x | Py Py
@, | A | B e product C of two n X n matrices A and B is defined as follows:
@1 €| D :

. .
. ¢y =¥ ay - byj. (9.3)
We want to compute A + (B +C)x"? 4+ Dx". The important observation is that we do k=l

have to compute B and (separately; we need only to know their sum! If we co
the product E=(P,+P)(Q,+Q3), then B+C=E—-A-D. Hence, we need’
compute only three products of smaller polynomials: A, D, and F. All the rest can
computed by additions and subtractions, which contribute only O (n) to the recun
relation anyway. The new recurrence relation is '

T(my=3T{n/2)+0(n),

which implies T'(n) = O (n'*) = O(n'). .
Notice that the polynomials P +P; and Q,+Q, are related to the ori

The Problem Compute the preduct C =A x B of two n x n matrices
of real numbers.

straightforward way (and seemingly the only way) to compute matrix product is to
w (9.3}, which requires using n* multiplications and (x — 1)n? additions. Notice that
polynomials in a strange way, They are formed by adding coefficients whose i #epresents the number of rows and columns in the matrix, rather than the size of the
differ by n/2. This is quite a nonintuitive way to multiply polynomials, yet this alga i, which is n?. We now present two different schemes that show the possibilities for
reduces the number of operations significantly for large #. OVEMEnLS.

(3 Example 9.1 1 Winograd’s Algorithm

Let P=1-x+2x"-x", and O =2+x~x%+2x>. We compute their product usmg

ume, for simplicity, that # is even. Denote
divide-and-conquer algorithm. We carry the recursion only one step. a

w2 niz

A,-= E [T TR TR T and Bj‘—" 2 bkal.j‘bZk,j'
k=1 k=1

A=(l-x)2+x)=2-x-x2,
Do (2-x) -1+ 2x) = 2+ 55 242, T rearranging terms, we get

ni2
= Y, @k thug) (@ u+by.) - A - B
k=1

and

E=(3-2)-(1+3x)=3+Tx~6x°. :
'the As and B)s need to be computed only once for each row or column. To compute
the A;s and Bs requires only n? multiplications. The total number of multiplications
:thus been reduced to “%n? +n°. The number of additions has increased by about
", This algorithm is thus better than the straightforward algorithm in cases where
itions can be performed more quickly than multiplications.

From £, A, and D, we can easily compute B+C =£ ~A ~B:
B+C =3+3x—3x2,
Now, P @ =A + (B+Cx™? 4+ Dx", and we have

PrQ=2-x-x? 35 4307 - 3x - 20t 4 55 -2y : . . .
ments This algorithm shows that rearranging the order of the computation can
€ a difference, even for expressions, such as matrix multiplication, which have a

e form. The next algorithm carries this idea much farther.

= 2o x4+ 202+ 353 ~ 50 + 525 - 20,

Notice that we used 12 multiplications compared to 16 in the straightforward alg
and 12 additions and subtractions instead of 9. (We could have reduced the number.
multiplications to 9 if we had carried the recursion one more step.) The savings-as
course, much larger when n is large. (The aumber of additions and subiractions rej
within a constant factor of that in the straightforward algorithm, whereas the numbx
multiplications is reduced by about n%4.)

.2 Strassen’s Algorithm

+-use the divide-and-conguer method in a way similar 1o the polynomial multiplication
ithm in Section 9.4. For simplicity, we assume that 1 is a power of 2. Let

302 Algebraic and Numeric Algorithms 9.5 Matrix Multiplication 303

A Ay, By, By Ciy Cyy
A= Ay Azalt BT By Byl 24 €= Cai Caa . -
. a aile ale+f)
where the A; s, B, s, and C s are n/2xn/2 matrices. We can use the divide- B ~a ~ai|f| T {~ale+f) l
conquer approach and reduce the problem to computing the C, ;& from the A, ;5 and) 3
B, ;s. That is, we can treat the n/2xn/2 submatrices as elements and consider the wh
problem as one of computing a product of two 2 x2 matrices of elements. {We have " a0l r ae

be careful when we substitute elements for submatrices; this is the subject of Exe
9.23.) The algorithm for the 2 x 2 product can be converted to an » x n product algon
by substiluting a recursive call each time a product of elements appears. The reg
algorithm for multiplying two 2x2 matrices uses 8 multiplications. Substituting ‘e @ b—allel [a(e- £r+bf
multiplication by a recursive call, we get the recurrence relation T(n)=8T(n/2)+0(5) = 2
which implies that 7'(n)=0 (n"**)=0 (n?). This is not surprising since we are ts : 0 & 1|/ b

the regular algorithm. If we could only compute the product of two 2 x 2 matrices

less than 8 multiplications, we would get an algorithm that is asymptotically faster'y
cubic, '

.
Vo ta-b blif = |aerb(f-e)

now look for ways to divide the general matrix product given in (9.4) into several
of the types listed above. Since these types of products use fess than the nominal
ber of multiplications, we may be able to save something at the end. It takes a lot of
aﬁd error to reach the right combinations. This process is hardly straightforward or
clear, but it is somewhat less than magic. Let

The most important part of the recursion is how many multiplications are requi
to compuie the product of two 2x2 matrices, The number of additions is not
important since they always contribute 0{n?) to the recurrence relation, which is
factor in determining the asymptotic complexity. (It does affect the constant fa

o . bH0O 0000
however.} Strassen found that 7 multiplications are sufficient to compute the prod bb0O 6000
two 2x2 matrices. Instead of simply writing down the equations leading to § B= C= \
algorithm, we sketch a method that could have been used by Strassen to find it : 0000y 00cc
method can be used for similar problems. 6060 00ce
Computing the product
la b e g ps 0 00 O a-b 0 0O O
cdilfh T |re c-b 00 c-b 0 d-b 0 b—c
) “lbc 00 b= ™ E=1 45 o 40 0
is equivalent to computing the product 0 00 O 0 0 0 dee

[a b 0ol [e

D .
cd0O0 If r 1, A=(B+C+D+E) and therefore AX =BX +CX+DX+EX. All the products
00ab A e, except for EX, can be computed with one multiplication using types o or B. The
00 (', i ‘ problem is 10 compute £X. But £ can be divided into two matrices £ =F +G, such
[N ~

. F is of type yand G is of type &:
We write (9.4) as A X=Y. We are looking for ways to minimize the num

. : a-b 0 0 0 00 00
multiplications required to evaluate Y. Let’s fook for special matrix products thai.
. . . _ 0090 0 0d-b0 b
easy to compute. As it turns out, we need four types of such special products (the: F= 0 of G= 00 0 0
two of which are very similar), They are as follows: $ c=b 0a-c

0 6 00 0 0 0d-c

Type Product No. of Multiplications

overall, AX=(B+C+D +F +G)X, and we need two products of type o, and one
o) @ane = ale+]) 1 : ict each of types B, v, and 8, with a total of 7 multiplications {see also Exercise
aallf ale+f} 5

0).

304 Algebraic and Numeric Algorithms

Complexity We use 7 products of matrices of half the original size, and a cons
number of additions of matrices. The additions are less important than the products,
!?ecause addition of two n X n matrices can be done in time O (n?), which is basicall '
linear time in the size of the matrices. The ¢ (#?) term is not the dominant factor i}
recurrence relation, which is T(n)=7T(n/2)+ 0 (n*). The solution of this recurre

relation is T(n)=0 (n"®"), which is approximately O (n*81), If we use the deriv

described abov?,. we obtain 18 additions (see Exercise 9.10). Itis possible to reduce
number of additions to 15 (Winograd {19731y, but this reduction does not change 1

asymptotic running time.

?omments There are three major drawbacks to Strassen’s algorithm;

algorithm faster than the straightforward O (n) algorithm (Cohen and
{1976},

similar errors in the input, Strassen’s algorithm will
the cutput.

3. Strassen’s algorithm is obviously much more complicated and harder to impler

than the straightforward algorithm. Furthermore, Strassen’s algorithm cannot

easily parallelized, whereas the regular algorithm can.

'Nevenheless, Strassen’s algorithm is important. It is faster than the regular
aigox‘lth‘m for large #, and it can be used for other problems involving matrices, such
matrix inversion and determinant computation. We will see in Chapter 10 that seve
f)ther problems are equivalent to matrix multiplication. Strassen’s algorithm can be
improved in practice by using it only for large matrices and stopping the recursion whes
the size of the matrices become smaller than about 100. This is similar to the idea i
selecting the base of the induction with care, which we discussed in Section 6.4.4 ang
Section 6.11.3. Strassen’s algorithm also opened the door to other algorithms and rai

many questions about sitnilar problems that seemed unsolvable,

9.5.3 Boolean Matrices

In this section, we consider the special case of computing the product of two nx
Boolean matrices. All elements are 0 or 1, and the sum and product are defined by the

following rules (which correspond to or and and respectively):

+ 011 x | O }
0011 (0 |0
1 111 10 1

These definitions of sum and product are of course different from the usual integer s

and product; hence, algorithms designed for integers normally cannot be used for
Booleans. One problem with the definition of a Boolean sum is that subtraction is ot
well defined (both 041 and 1+1 are defined as 15 hence, 1-1 can be both 1 and 0):

Empirical studies indicate that » needs to be at least 100 to make Strasséri:

Strassen’s algorithm is less stable than the straightforward algorithm. That is; for
probably create larger errors i

9,5 Matrix Muitiplication 305

efore, Strassen’s algorithm cannot be used for Boolean matrices, because it requires
sction. However, there is a trick that allows us to use Strassen’s algorithm. We
ider every bit as an integer modulo n + 1, where n is the size of the matrices, and we
the rules of addition and multiplication of such integers. So, for example, if n=4,
+1=2, 1+1+1=3, and 1+1+1+1+1=0. It turns out that, if we compute the
ix product according to these rules and if we substitute every nonzero entry in the
‘result by a 1, then we get the Boolean product. This is so, essentially, because we
ot “‘overflow”” the number n + 1 {we omit the proof). (More precisely, the integers
ilo & form a ring, which is an algebraic structure with definitions of sums and
adizcts that satisfy certain properties; Strassen’s algorithm can be applied to any ring;
“Aho, Hoperoft, and Ullman [1974] for more details.) Thus, the complexity of
an matrix multiplication is also O(n*®'). The use of Strassen’s aigorithm,
ever, requires integer operations rather than Boolean operations. Next, we present
algorithms that utilize the properties of Boolean operations to improve the running
of Boolean matrix multiplication. These algorithms are more practical in most
jonis than Strassen’'s algorithm for Boolean matrix multiplication.

~Since Boolean operands require only one bit of storage, we can store k operands in
‘computer word of size k. In particular, since we assume that n is stored in one
suter word, we can store k bits for k Slog,n in one word, The regular algorithm for
ix multiplication consists of n” row-by-column products (or inner products), as

n

inied in (9.3). The ijth inner product consists of computing ¥, a;, * by, Assume, for
me=l

ty, that k divides n. We can divide each inner product into a sum of n/k products,
“of which involves Boolean vectors of size &. Finding the inner product of two
tean vectors of size k is simpler than, say, multiplying two k-bit integers. We assume
multiplication of k-bit integers takes one unit of time; thus, it is not unreasonable to
me that computing an inner product of two Boolean vectors of size & takes one unit
ime. (For example, an inner product can be computed in two steps: first, we compute
nd of the two vectors, then we check whether the result is all 8s.) Nevertheless, we
lv do not want to make the algorithm dependent on special assumptions concerning
computer primitives (besides the four basic arithmetic operations). Next, we show
to avoid the need for such assumption. Then, we combine this idea with another
to improve Boolean matrix multiplication even further. Both ideas Hlustrate
testing techniques for algorithm design.

. The first idea is to precompute all possible Boolean inner products of size k&, There
2% possible products, since they involve two Boolean vectors of size k. We can
npute all of them in time O (k2*) (we can actually do better than that; see Exercise
24), and store all the results in a two-dimensional table of bits of size 2“x2%. The
‘product of the two vectors @ and b is stored at entry (i, i), where i, is the integer
pepresented by the & bits of @ and i, is the integer represented by the & bits of b. From
wow on, we will not make a distinction between i, and a (or i, and b), since they are
spresented in exactly the same way, Thus, given two Boolean vectors of size &, we can
sompute their product by simply looking at the table. If we can access a table of size 2%
(0 (1) time, then each inner product of size & can be computed in constant time {once

306 Algebraic and Numeric Algorithms 9.5 Matrix Multiplication 3067

the table is constructed). For example, let k={logan/2|. In that case, the size of
table is O (n), and constructing it requires O (n lognn) time, The assumption that we :
access a table of size O (n) in constant time is not unusual, We have already made th
assumption (implicitly) many times before. We usually assume that, if n is the size of "
input, then we can store a number with logan bits in one computer word (or a consta
number of computer words). Once the table is constructed, we can compute a Bool
inner product of size n in time O (n/k) = O {(n/logn). Notice that the table depends
on the value of £ and not on the matrices. So, computing the product of two Bool
matrices can be done in time 0(n3/E0gn) and extra storage of O(n). We can s
choose & to be | logyn|, in which case the table size is O (12), but we save an extra factoe
of 2 in the multiplication algorithm. However, if we can afford an extra space of si
@ (n%), we can find a faster algorithm, o

Consider two nxn Boolean matrices A and B. The usual way [0 view mat
maltiplication is as defined in (9.3): We perform n? inner products, each involves a row
of A and a column of 8. We can also multiply the two matrices by multiplying colurm
of A with rows of B in the following way. Denote the rth column of A by Aclr]. and. '
rth row of B by Beir]. Consider Ac[r] as an » X } matrix, and Brlriasa txn mau;i
The product of Acfr] with Bglr] is an n X n matrix, whose i jth entry is the product of the
ith entry of Ac[r} with the jih entry of Ber] (see Fig. 9.4). It is easy to see that

_problem now is how to compute C;=A; B; efficiently. We describe this
mputation by an example (see Fig. 9.5).

The first row of C; is exactly the same as the third row of B;, because the first row
; has a 1 only in column 3. Similarly, the second row of C; is the Boolean sum of the
ond and third rows of B;. It is easy to see that the jth row of C; is a Boolean sum of
ws of B, according to the jth row of A;. Instead of computing each row of C, in a
aightforward way, we use a method, similar to the algorithm we described earlier, for
omputing all possibilities. There are k entries in each row of A;, so there are 2
ssible combinations of rows of 8;. Let k =log,n, and assume again that & is an integer.
‘e precompute all 2 = 2% =n combinations, and store the results in a table. In
witrast to the first algorithm, this table contains n rows rather than » bits; thus, the
orage requirement is O (n*). Also, this table depends on B;, and must be constructed
r-each B;. To find row j of C;, we look at row j of A, and see the combination of rows
B, that need to be added. This combination can be represented as an integer
corresponding to the binary representation of row j of A; (e.g., the first row of A; in Fig.
.5 corresponds to 1, the second row corresponds to 3, the third row corresponds to 4,
ad so on). This integer is the address in the table where row j of C; is stored. It takes
(1) time to find a row of C; in the table, and O(n) time to copy this row to the
appropriate row in C;. Thus, computing C; can be done in time O (n?).

“. We now show that all the combinations of surns of rows of B; can be computed in
gme O (n - 2. Each combination of rows corresponds to a £-bit integer. We assume, by
duction, that we know how to compute the sums of combinations of rows
torresponding to integers that are less than i, Computing the sum corresponding to 0 is
vial. Assume that the binary representation of i —1 is oxx 01111 — namely, its least
mificant 0 is followed by j Is. The sutn of rows corresponding to i is equal to the sum
' rows corresponding to xxxx 600000 plus the row corresponding to 0000100000, Since
xx 000000 is less than i, we know its corresponding sum by induction, and we need
nly to add one row to it. It takes » Boolean additions to add a row, and we have 2t
wombinations. Hence, all the precomputing can be done with O (n-2*) operations. If

AB=Y Aclr]-Bilr].

ra=]

The expression (9.5) is equivalent to (9.3) in the sense that the same products .and
additions are performed, but they are performed in a different order.

We now partition the columns of A and the rows of B into n/k ecjuai-sizcd ETOuf
(We assume for simplicity that n/k is an integer; otherwise, there will be an extra small
group.} In other words, we divide A into A, A,, .., A, such that each A; is an nx

matrix, and we divide B into B, B,, ..., B, ,, such that each B; is an k xn matrix. It:
easy to see that

4B n}féA 2 logyn, then the running time is O (n2). This algorithm is known as the four-Russians
=t 00 1 11010110 60 1110000
—— o 01 1 10011101 AN SR I B B BV
: ! ; | 100 01110000 Lol 0110
! % : E 101 11110110
: : f E Belk) B,
L Aclk] : | ! 110 i 11011111
| ; | | AR A A A R AN R
; ; ‘5 : 100 Lo 010
AN I R H e . 0 0 1 o I 11! 0000
A B C Aa Cf':AeBJ

Figure 9.4 Multiplying matrices columns by rows.
Figure 9.5 Boolean matrix multiplication.

308 Algebraic and Numeric Algorithms 9.6 The Fast Fourier Transform 309

algorithm (Arlazarov et al. [1970)), after the nationality and number of its mven

“To add two vectors of size n, we use Add Table to add the corresponding two
The algorithm is given in Fig. 9.6.

m-tuples in n/m steps. Each step consists of taking two m-bit numbers and fetching the
: sponding entry in Add Table (which contains their sum). Such a step can be
formed in constant time, as long as the size of the computer word is at most 2m. We

e this trick both for constructing the tables for the regular four-Russians algorithm, and
-adding the rows during the execution of the algorithm. If we select m to be
sroximately equal to | logyn /2], then 22 =0 {n) and, since we assume that we can
wesent n in one computer word, we can represent a 2m-bit number in one word. For

- choice of m, the running time of the improved algorithm is O (n 3 iog*n).

Algorithm Boolean_Matrix_Multiplication (A, B, nk);
Input: A, B (two n x»n Boolean matrices), and k (an integer),
Output: C (the product of A and B),

{ we assume, for simplicity, that k divides n }

begin
Initialize the matrix C to 0 ;
Jori:=0tontk-1de
Construct Tabie, ,
{ Table; is an 2¥ array of Boolean vectors of size n which containg
all possible combinations of sums of k rows of By; see the text }
m=i*k;
Jorj:=Itondo
Let Addr be the k-bit number
Alfym+ 1AL, m+2) - - Alj, m+k];
add Table;[Addr) to row jin C

mments We presented an interesting method of computing all possibilities
tead of the usual wisdom of computing only what is needed. We also demonstrated
3 changmg the order of the computation can lead to a better algorithm. The trick of
mputing ali possible combinations can be applied in the same manner to other
& gebraic functions on bit strings that cannot be performed directly by the hardware.

.6 The Fast Fourier Transform

“an introduction to the fast Fourier transform, we quote from John Lipson’s excellent
end !

An algorithm may be appreciated on a number of grounds; on technological

grounds because it efficiently solves an important practical problem, on

aesthetic grounds because it is elegant, or even on dramatic grounds

. because it opens up new and unexpected areas of applications. The fast
Fourier transform (popularly referred to as the *'FFI""), perhaps because it

" is strong on all of these departments, has emerged as one of the “‘super”’

algorithms of Computer Science since its discovery in the mid sixties.
(Lipson [1981], page 293.)

Figure 9.6 Algorithm Boolean_Matrix_Multiplication.

Compiexlty To compute A B we have to compute the n/k products A; - B,.
each such product takes 0 (n?) time and constructmg the table takes O(n - 2*) time;
total runnmg time of the algorithm is O (3 1k + 1?2 247k, 1f k=logyn, then the
time is O (n* log n).

Next, we show how to combine the ideas of the first algorithm with the ideas of
second algorithm to improve the running time by another O (log n) factor. The main
in algorithen Boolean_Matrix_Multiplication {Fig 9.6} involves additions of a row f
table to C. We can perform this addition in time O (n/m) by using the same tnck
precomputing all possible additions. (This may not be necessary if a Boolean additio
a primitive operation that can be performed quickly; the algorithm, however, does
depend on this assumption.) We first construct a two-dimensional table Add Table
size 2" 2" that includes all possible additions of two Boolean vectors of size m;'
other words, the (i, j)th entry in Add_Table is the Boolean sum of i and j. (Again, i a
are used both as integers and as Boolean vectors.) It is easy to see that Add_Table can
constructed in time and space O{m -2y Notice that, unlike the tables we used
algorithm Boolean_Matrix_Multiplication (Fig. 9.6), Add_Table is independent of A:
B; it depends only on the value of m. We now divide each row of B; into n/m groy
each of size m (we assume again, for simplicity, that m divides n). We consider &
group as a m-bit integer; thus, each row of B, is represented by an n/m-tuple of inte
All the steps of the algorithm will be performed on these tuples.

-FFT algorithm is by no means simple, and its development is not straightforward.
€ concentrate on only one application of the FFT — polynomial multiplication.

The Problem Given two polynomials p (x) and g (x), compute their
product p {(x)- g (x).

. problem, as stated above, is not well defined. We have not specified the
fepresentation of the polynomials. We usually represent a polynomial
o1 X" 2, ox" P+ o 4 ax +ag by the list of its coefficients in increasing
grder of degrees. This representation is definitely adequate, but it is not the only one
sible. Consider, for example, a polynomial of degree 1, which is a linear function
yx4ag. This linear function is usually specified by the two coefficients a, and aq.
ut, since the function corresponds to a line in the plane, it can also be specified by any

310 Algebraic and Numeric Algorithms 9.6 The Fast Fourier Transform 311

two (nonequal) points on that line. In the same way, any polynomial of degree n'i trix by vector muitiplication:

uniquely defined by n-+1 points. For example, the second-degree polyno T xg (ol * - (o)1) [ag] [P{xg)]
px)=x>+3x+1 is defined by the points (1,5), (2,11}, and (3,19), and it is the oy Foxy () - ()t a Pix))
second degree polynomial that includes all those points, These three points are not l i I I l
only three points that define this polynomial; any three points on the corresponding cuy =
will do.
This representation is attractive for polynomial multiplication because multiplyi
the values of points is easy. For example, the polynomial g(x)=2x%—x +3 can’ 1 Xy o) o ()™ (8 Plx,.5)
represented by (1,4), (2,9), and (3,18). We right away know that the product p(x)- L o - -
has the values (1,20), (2,99}, and (3,342). These three points are not enough to represest “the question is whether we can choose the values of xy,x,,.., X, , in a way that

p{x) g (x) since it has degree 4. We can overcome this probiemn by requiring five po
from each of the smaller polynomials; for example, we can add the points (0,1)
(~1L,—-1) w p(x), and (0, 3) and (-1, 6) 10 ¢ (x). We can then easily obtain five points
belong 1o the product — (1, 20), (2, 99), (3, 342), (0, 3), and (-1, ~6) — by making
five scalar multiplications! Using this idea, we can compute the product of
polynomials of degree », given in this representation, with only O (n) multiplications.

The main problem with this approach is that we cannot sitaply change’
representation to fit only one application. We must be able, for example, to evaluate
polynomial at given points, This is much harder to do for this representation than
when the coefficients are given. However, if we could convert efficiently from:
representation 10 another, then we would have a very good polynomial multiplica
algorithm. This is what the FFT achieves. :

Converting from coefficients to points can be done by polynomial evaluation. -

wmplifies this multiplication. Consider two arbitrary rows i and j. We would like to
ce them as similar as possible to save multiplications. We cannot make X w Xy,
use the values must be different, but we can make (x,)*=(x;)’ by letting x;=-x;.
#his is a good choice, because every even power of x; will be equal to the same even
power of x;. We may be able to save one-half of the multiplications involved with row I
ermore, we can do the same for other pairs of rows. Our goal is to have » special
vs for which the computation above requires only /2 vector products. If we can do
it,-then we may be able to cut the problem size by half, which will lead to a very
cient algorithm. Let's try to pose this problem in terms of two separate subproblems
half the size.

' We want to divide the original problem into two subproblems of size n/2,
cording to the scheme described above. This is iltustrated in the following expression,

can compute the value of a polynomial p (x), given by its list of coefficients, at any gi 1 Xg (xg)* - - ()" o)
point by Horner’s rule (Section 5.2) using n multiplications. We need to evaluate rlx I R e ag P (xp)
n arbitrary points, so we require n’ multiplications. Converting from poings a Pix)
coefficients is called interpolation, and it also generally requires O (n?) operations. !
key idea here (as in so many other examples in this book) is that we do not have to Udgon (e -0 ())
arbitrary points; we are free to choose any set of n distinct points we want. The. -) . 0.7
Fourier transform chooses a very special set of poinis such that both steps, evaluation I o—xg (xg? (cxg)!
interpolation, can be done quickly.

bo-x =x {(=x !
The Forward Fourier Transform : ot Pty
We first consider the evaluation problem. We need to evaluate two n—1 L A O PSTD CERTRT e Ll B - .

polynomials, each at Zn -1 points, so that their product, which is a 2n—2 d
polynomial, can be interpolated. However, we can always represent an n—1 d
polynomial as a 2n -2 degree polynomial by setting the first n— 1 (leading) coeffic
to zero. 3o, without loss o]f generality, we assume that the problem is to evaluaie

&7 X 1 matrix in (9.7) is divided into two submatrices, each of size n/2 x . These two
ices are very similar. For each i, such that 0<} <n/2, we have x;=—x,5,;. The
cients of the even powers are exactly the same in both submatrices, so they need to
somputed only once. The coefficients of the odd powers are not the same, but they
_kac_tly the negation of each other! We would like to write the expressions for P (x;)
P (~x;) for 0<i < n/2 in terms of the even and odd coefficients:

arbitrary polynomial P = ¥ ax’ of degree n~1 at n distinct points. We want o

i=0 o

points for which the polynomiais are easy to evaluate. We assume, for simplicity,)
is a power of 2,

We use matrix terminology to simplify the notation. The evaluation

polynomial £ above for the n points xp, x|, ..., X,_; can be represented as the follg

; nil~i) a2)
Py=E+0= T a,x¥ + Y agyxi
; =0 i=0

**even”" polynomial (E) can be written as a regular polynomial of degree n/2-1

312 Algebraic and Numeric Algorithms 9.6 The Fast Fourier Transform 313

with the even coefficients of P:
Hiq- i
E= ¥ auix® =Pt
i=0

n rather than for 8. Such a number is called a primitive nth raot. of unity. We
note it by ©0. (We do not include n in the notation for simplicity; we will use the same
mfoughoui this section.) @ satisfies the following conditions:

7 j ; (9.9)
The “'odd’’ polynomial ({2} can be written in the same way: o'=1, and w#lfor0<j<n
i 2-1

O=x F an. (% =xP,(x%.

=0

7 R .
‘n points that we choose as xg, x|, ... £,-; are [, o, o, .., @', Therefore, we want
'compute the following product:

So, overali, we have the following expressi Lol : B 1 [%] _ o w
' N] O
g & 108 1 w wz . m""‘i a P(m)

PL)=P,(xY) ¢ x P, (2", o ! - @D : P(w?)
where P, (P,) are the n/2~ | degree polynomials with the coefficients of the even (o "
powers of P, When we substitute —x for x in (9.8), we get P(~x) =P (x¥) + (—x}P,,(x_;
To evaluate (9.7), we need to compute P(x;) and P {-x;), for 0<i <n/2. To do tha 1 @'t @2 L glamle-b) g P
need to compute only #/2 values of P.(x?) and n/2 values of P.(x%), and to perform # L 4o - N
additions, n/2 subtractions, and n multiplications. So, we have two subproblems of § product is called the Fourier transform of (a4, a,, ..., a,_,). First, we notice that
n/2, and O (n) additional computations,

d for any j, 0<j<ni2, we have xj,n = w"? x;=—x; So the reduction that we
lied initially to the problem of size » is still valid. Furthermore, the subproblems
ting from that reduction have »/2 points, which are 1, @, w*, ..., "%, But this is
tly the problem of size n/2 in which we substitute @’ for @. The conditions in (.9.9}
ly that o' is a primitive (#/2}th root of unity. Therefore, we can continue
ively, and the complexity of the algorithm is O (nlogn}. A high-level view of the
withm is presented in Fig. 9.7,

Can we continue with the same scheme recursively? If we could, then we.wi
get the familiar recurrence relation T(n)=2Tni2y+ O (n), resulting in an O(n log
algorithm. But this is not so easy. We reduced the problem of computing P {x
polynomial of degree n—~1) at n points to that of computing P,(x*) and P,(x?)
polynomials of degree n/2~ 1) at n/2 points. This is a valid reduction, except for
small thing. The values of x in #(x) can be chosen arbitrarily, but the values of
which are needed, for example, in Pe(xz), can only be positive. Since we obtained
reduction by using negative numbers, this poses a problem. Let’s extract from (9.7)
matrix that corresponds to the computation of P,{(x;}*): :

Algorithm Fast_Fourier_Transform (n,ag.a,, ... a,.,, @, varV);
r 2 4L =27 r g - - Input: = (aninteger), ay. aq, ..., @, (a sequence of elements whose type
b Go) (o) (o) 9o Pelxo) depends on the application), and @ (a primitive ath root of unity).
Lot e gyt a3 Polxy) QOutput: V (an array in the range [0..n — 1] of output elements).
) { we assume that n is 2 power of 2 }
- begin
ifn=1then
D Owatl Gz -+ a2 | Hapa| [Pl Vil =ay
- - - . else .
If we try the same trick on this subproblem, we need 10 set (x,4)? =—(xg).. § Fast_Fourier_Transform(n/2, ay az, ... dy_3, o %)
Squares are always positive, this seems impossible. But it is not impossible if we Fast_Four :er_/grar;sﬁarm(n/[f ai'gag}, a;__, 0;0})
complex numbers which include V=1, We again divide the problem into two parts Jor {/ "T]O.t_ag U;‘f’ w‘; lifj? .]G_W{ 8 for x=
let ;4 = \[:ij, for 0<j < nf4. This partition satisfics the same properties as did U - Ul
») ; ; VIj+n/2] = Uj]-of W[J)
first partition. Hence, we can solve the problem of size n/2 by solving two subprobl end

of size n/4 and O {n) additional computation,

If we want to carry this process one step further, we need a number that is equal
\N:;; that is, a number z such that z8=1, and 2/ # 1 for 0 <j <8 (which imp!ie_s'
2%=—1, and 22 = -1,). In general, we need a number that satisfies the condition ab

Figure 9.7 Algorithm Fast_Fourier_Transform.

314 Algebraic and Numeric Algorithms

O Example 9.2

We show how to compule the Fourier transform for the polynomial (0, 1,2, 3,4, 5,6
To avoid confusion, we denote the subproblems by P; . (xg.x(,...x), wh
ForJis i denote the coefficients of the polynomials, and Xs Xy Xy denote.
values for which we need 1o evaluate the polynomials. So, in particular, this exa
?nvoEves computing Py 534567(1, ®, 0%, .,). (This notation is quite awkward,
1t contains all the information we need.) The main recurrence we use is (9.8).

The first step reduces Py 554567(1 @, 07, ..., 07) 1o Poaas(l, @, 0, 0¥
Pi357(L of, 0*, @®). We continue recursively and reduce Py, o(1, 0%, @', %
Poa(l, @) and Py (1,). P ,4(1,) is then reduced to Po(1), which is clearly 0,
P4(1}, which is clearly 4. We can now combine the results to get

P0‘4(1):P0(f)+ PP =0+1-4=4,
and
Pos(0)=Poo")+ 'P (0 =0+ * - 4.

Since w'=-1, we get Py (") =4, and, overall, Py, (1, 0") = (4, -4). In the
manner, we get P, 4(1, o) = (8, —4),

We now combine the two vectors above to compute Py, 4 (1, o, 0, 0f):

PoaaeD)=Po)+1-Pa(l)=4+8=12.
Po2as(@) =Py (0%) + 0 - Py g(@*) = -4 + w?(—4),
Po246(0") =Py 4(@%) + 0 P (0}) = Pg 4(1)~ 1 - Py g(1) =4~ 8 = -4,

P0246(0%) = Po o(@'%) + 68 Py o(0?) = Py s - 07 - Py (") = —4 — (-4
So, overall

Poaastl, o, 0f, %)= (12, ~4(1+@?), ~4, ~4(1 -2}).
In the same way, we find that

Piasa(l, o, 0, 0®) = (16, -4(1+0?), ~4, ~4(1 —w?)).

To compute Py 5545671, 0,07, .., 0"), we need to compute 8 values.
example, Pg | 234567(1) =12+ 116 =28, and, in the same manner, Po; 53456
=1 16=—4 Pyiosas62(®) = (~4(1+0) + @+ (=4(1 +02), and, in the
manner, Po i 23.4567(0°) = (~4(1+0%)) - @+ (~4(1 + %)), and s0 on. We leave the
to the reader. '

The Inverse Fourier Transform

The algorithm for the fast Fourier transform solves only half of our problem. We
evaluate the two given polynomials p (x) and g{x} at the points 1, o, .., 0" quié
multiply the resulting values, and find the values of the product polynomial p(x)-g{x

L

9.6 The Fast Fourier Transform 315

shose points. But we still need to interpolate the coefficients of the product polynomiat

‘the evaluation points. Fortunately, the interpolation problem tumns out to be very
ilar to the evaluation problem, and an almost identical algorithm can solve it.

“ Consider again the matrix notation. When we are given the coefficients

2@, .. dy.) of the polynomial, and we want to compute the values of the
ynomial at the n points 1, o, @, .., 0"}, we compute the matrix by the following
r product:

T P I fao] [Py]

1o o w' @ P{w)
m? 0.)2.2 . mZ'(n—l) . P ((!.)2)

i mn-l m(n—i)i .. w(n»l)-(nwl} Uoos P(mn“l)

‘the other hand, when the values of the polynomial (P (1), P{w),...P{w" ™)) =
iV, ..., Vy.p) are given, and we want to compute the coefficients, we need to solve the
wing systermn of equations for a, a4, ..., 4,.;:

'E 1 1 [N i 1¥F ap Vg
1 ® 0)2 L. mn—l a, Vi
wz (1)2‘2 .. m!'(n-l) . Yo
=1 | (9.10)
1w -} m[rf—lﬂ L. m(n-i)'(n—l) ;) Vol

ing systems of equations is usually quite time consuming (O (n*) for the general
£}, but this is a special system of equations. Let's write this matrix equation as
@)@ =7, where V() is the matrix in the left side, a ={ap.4,...,a,-;), and
(¥, V), - Vy1). The solution for @ can be written as @ = [V ()] - 7, provided that
#) bas an inverse. It turns out that V(@) always has an inverse: furthermore, its
e has a very simple form (we omit the proof):

) :D Theorem 9.1
Tt = L uel
V! = v, .

krefore, o solve the system of equations (9.10), we need to compute only one matrix
ector product. This task is greatly simplified by the following theorem.

[Theorem 9.2

If is a primitive nth root of unity, then 1/ is also a primitive nth root of
unity. O

316 Algebraic and Numeric Algorithms Drilt Exercises 317

Therefore, we can compute the product V(1/m)V by using the algorithm for the:
Fourier transform, substituting 1/ for . This transform is called the inverse Four
transform.

scussion on the implementation of Strassen’s algorithm can be found in Cohen and
{1976}

The four-Russians algorithm is due to Arlazarov, Dinic, Kronrod, and Faradzev
0}. The improvement of the four-Russians algorithm by using addition tables has
bly been observed by many people; it is mentioned, without details, in Rytter
5], where a similar technique is used for context-free language recognition. The
e idea was also used to improye sequence comparisons algorithms (Masek and
rson [1983], Myers [1988]). The solution of Exercise 9.26 appears in Atkinson and
toro [1988]. Fischer and Meyer [1971] showed a reduction between Boolean matrix
tiplication and the transitive-closure problem.

. The algorithm for the fast Fourier transform was introduced by Cooley and Tuckey
1. although the origins of the method can be traced to Runge and Konig [1924]. For
¢ information on the fast Fourier transform, see Brigham [1974] and Elliott and Rao
2.

Complexity Overall, the product of two polynomials can be computed

O (nlogn) operations, Notice that we need to be able to add and multiply co
numbers.

9.7 Summary

The algorithms presented in this chapter are a small sample of known algebraic
numerical algorithms. We have seen again that the straightforward algorithms are
tecessarily the best. Strassen’s algorithm is one of the most striking examples
nonintuitive algorithm for a seemingly simple problem. We have seen several
examples of the use of induction, and, in particular, of the use of divide-and-c
algorithms. :

The four-Russians algorithm suggests an interesting technique, which is not
on induction. The main idea is to compute all possible combinations of certain te:
even if not all of them are needed. This technique is useful in cases where computing;
{or many) combinations together costs much less than computing each one sepa
Another technique, which is common particularly for problems involving marrices, _

use of reductions between problems. This method is described, with examplés;
Chapter 10.

3l}rill Exercises

Discuss the relationship between algotithm Power by Repeated Squaring (Fig. 9.2) for
computing n* and the binary representation of k.

Algorithm Power by Repeated Squaring (Fig. 9.2) for computing n* does not necessarily
lead to the minimal number of multiplications. Show an example of computing 2* (k > 10)
with fewer number of multiplications,

Bibliographic Notes and Further Reading

Let x be a positive rational number that is represented by the pair (g, b) such that x =a/#,
Design: an algorithm to compute the smatlest representation of x; that is, the representation
{(a, b) with the smallest possible values of @ and b. For example, if x=24/84=6/21=2/7,
then (2, 7) is the smallest representation of x.

The best source for arithmetic and algebraic algorithms is Knuth [1981]. Other-b
include Aho, Hoperoft, and Ullman [1974], Borodin and Munro [1975], Wing
[1980], and Lipson [1981]. ;
The algorithm for computing powers by repeated squaring is very old; it appes:
in Hindu writings circa 200 B.C. {(see Knuth [1981] page 441). The RSA public:
encryption scheme is due to Rivest, Shamir, and Adleman {1978]. The idea of
key encryption schemes was introduced by Diffic and Hellman [1976]. Eu
algorithm appeared first in Euclid's Elements. Book 7 (circa 300 B.C), but it
probably known even before then (see Knuth [1981], page 318). The divide-and-c
algorithm for multiplying two polynomials was developed by Karatsuba and
[1962] (in the context of multiplying two large numbers). :
Winograd’s algorithm appeared in Winograd {19681 (see also Winograd [19
Strassen’s algorithm appeared in Strassen [1969]. The constant ¢ in the asyﬂi
running time O (n°) for matrix multiplication has been reduced several times since
(first by Pan [1978]). The best-known algorithm at this time — in terms of asym
running times — is by Coppersmith and Winograd [1987}, and its running time
D(»*™), Unfortunately, as the (0 notation indicates, this algorithm is not p
For more on the complexity of matrix multiplication and related topics see Pan [1984

Prove that the straightforward divide-and-conguer algorithm for polynomial multiplication
that computes all four products of the smaller polynomials makes exactly the same
operations as does the straightforward algorithm that follows (9.1). Assume that # is a
power of 2.

Find the product P(x)-Q(x), by hand, using the divide-and-conquer polynomial
multiplication algorithm presented in Section 9.4.

Py=x+20% +3x 4 -0 4 150
GO)y=16+15¢ + tx? + v p2x™ 4 14,
How many operations are reguired overal}?

A divide-and-conquer technigue can be used to multiply two binary numbers. Describe
- such an algorithm, and discuss the differences between it and the polynomial multiplication
algorithm.

