A simple case: Computing Fibonacci Numbers

- Recall $F_n = F_{n-1} + F_{n-2}$ and $F_0 = 0$, $F_1 = 1$
- Recursive algorithm:
 - Fibo(n)
 - if n=0 then return(0)
 - else if n=1 then return(1)
 - else return(Fibo(n-1)+Fibo(n-2))

Full call tree

Memoization (Caching)

- Remember all values from previous recursive calls
- Before recursive call, test to see if value has already been computed
- Dynamic Programming
 - Convert memoized algorithm from a recursive one to an iterative one
Fibonacci
Dynamic Programming Version

FiboDP(n):
F[0] ← 0
F[1] ← 1
for i = 2 to n do
 F[i] ← F[i-1] + F[i-2]
endfor
return(F[n])

Fibonacci: Space-Saving Dynamic Programming

FiboDP(n):
prev ← 0
curr ← 1
for i = 2 to n do
 temp ← curr
curr ← curr + prev
 prev ← temp
donefors
return(curr)

Dynamic Programming

- Useful when
 - same recursive sub-problems occur repeatedly
 - Can anticipate the parameters of these recursive calls
 - The solution to whole problem can be figured out with knowing the internal details of how the sub-problems are solved
- principle of optimality
 "Optimal solutions to the sub-problems suffice for optimal solution to the whole problem"

Three Steps to Dynamic Programming

- Formulate the answer as a recurrence relation or recursive algorithm
- Show that the number of different values of parameters in the recursive calls is “small”
 - e.g., bounded by a low-degree polynomial
 - Can use memoization
- Specify an order of evaluation for the recurrence so that you already have the partial results ready when you need them.

Weighted Interval Scheduling

- Same problem as interval scheduling except that each request i also has an associated value or weight \(w_i \)
- \(w_i \) might be
 - amount of money we get from renting out the resource for that time period
 - amount of time the resource is being used \(w_i = f_i - s_i \)
- Goal: Find compatible subset \(S \) of requests with maximum total weight

Greedy Algorithms for Weighted Interval Scheduling?

- No criterion seems to work
 - Earliest start time \(s_i \)
 - Doesn’t work
 - Shortest request time \(f_i - s_i \)
 - Doesn’t work
 - Fewest conflicts
 - Doesn’t work
 - Earliest finish time \(f_i \)
 - Doesn’t work
 - Largest weight \(w_i \)
 - Doesn’t work
Towards Dynamic Programming: Step 1 – A Recursive Algorithm

- Suppose that like ordinary interval scheduling we have first sorted the requests by finish time f_i, so $f_1 \leq f_2 \leq \ldots \leq f_n$.
- Say request i comes before request j if $i < j$.
- For any request j let $p(j)$ be the largest-numbered request before j that is compatible with j.
- or 0 if no such request exists.
- Therefore $\{1, \ldots, p(j)\}$ is precisely the set of requests before j that are compatible with j.

Towards Dynamic Programming: Step 1 – A Recursive Algorithm

- Two cases depending on whether an optimal solution O includes request n.
 - If it does include request n, then all other requests in O must be contained in $\{1, \ldots, p(n)\}$.
 - Not only that!
 - Any set of requests in $\{1, \ldots, p(n)\}$ will be compatible with request n.
 - So in this case, the optimal solution O must contain an optimal solution for $\{1, \ldots, p(n)\}$.
 - “Principle of Optimality”

Towards Dynamic Programming: Step 1 – A Recursive Algorithm

- Sort requests and compute array $p[i]$ for each $i=1, \ldots, n$.

```
ComputeOpt(n)
if n=0 then return(0)
else
  u←ComputeOpt(p[n])
  v←ComputeOpt(n-1)
  if $w_n+u>v$ then return($w_n+u$)
  else return(v)
endif
```

Towards Dynamic Programming: Step 2 – Small # of parameters

- ComputeOpt(n) can take exponential time in the worst case.
 - 2^n calls if $p(i)=i-1$ for every i.
- There are only n possible parameters to ComputeOpt.
 - Store these answers in an array $OPT[n]$ and only recompute when necessary.
 - Memoization.
 - Initialize $OPT[i]=0$ for $i=1, \ldots, n$.
Dynamic Programming: Step 2 – Memoization

ComputeOpt(n)
if \(n = 0 \) then return(0)
else
 \(u \leftarrow \text{MComputeOpt}(p[n]) \)
 \(v \leftarrow \text{MComputeOpt}(n-1) \)
 if \(w_n + u - v \) then
 return(\(w_n + u \))
 else
 return(\(v \))
endif

MComputeOpt(n)
if \(\text{OPT}[n] = 0 \) then
 \(v \leftarrow \text{ComputeOpt}(n) \)
 \(\text{OPT}[n] \leftarrow v \)
else
 return(\(\text{OPT}[n] \))
endif

Dynamic Programming Step 3: Iterative Solution

The recursive calls for parameter \(n \) have parameter values \(i \) that are < \(n \)

IterativeComputeOpt(n)
array \(\text{OPT}[0..n] \), \(\text{Used}[1..n] \)

\(\text{OPT}[0] \leftarrow 0 \)

for \(i = 1 \) to \(n \) do
 if \(w_i + \text{OPT}[p[i]] > \text{OPT}[i-1] \) then
 \(\text{OPT}[i] \leftarrow w_i + \text{OPT}[p[i]] \)
 \(\text{Used}[i] \leftarrow 1 \)
 else
 \(\text{OPT}[i] \leftarrow \text{OPT}[i-1] \)
 \(\text{Used}[i] \leftarrow 0 \)
 endif
endfor

Producing the Solution

IterativeComputeOptSolution(n)
array \(\text{OPT}[0..n] \), \(\text{Used}[1..n] \)

\(\text{OPT}[0] \leftarrow 0 \)

for \(i = 1 \) to \(n \) do
 if \(w_i + \text{OPT}[p[i]] > \text{OPT}[i-1] \) then
 \(\text{OPT}[i] \leftarrow w_i + \text{OPT}[p[i]] \)
 \(\text{Used}[i] \leftarrow 1 \)
 else
 \(\text{OPT}[i] \leftarrow \text{OPT}[i-1] \)
 \(\text{Used}[i] \leftarrow 0 \)
 endif
endfor

Example

\begin{tabular}{cccccccccc}
 \(s_i \) & \(t_i \) & \(w_i \) & \(p[i] \) & \(\text{OPT}[i] \) & \(\text{Used}[i] \) \\
 \hline
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
 \hline
 4 & 2 & 6 & 8 & 11 & 15 & 11 & 12 & 18 \\
 7 & 9 & 10 & 13 & 14 & 17 & 18 & 19 & 20 \\
 3 & 7 & 4 & 5 & 3 & 2 & 7 & 7 & 2 \\
 0 & 0 & 0 & 1 & 3 & 5 & 3 & 3 & 7 \\
\end{tabular}

Example

\begin{tabular}{cccccccccc}
 \(s_i \) & \(t_i \) & \(w_i \) & \(p[i] \) & \(\text{OPT}[i] \) & \(\text{Used}[i] \) \\
 \hline
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
 \hline
 4 & 2 & 6 & 8 & 11 & 15 & 11 & 12 & 18 \\
 7 & 9 & 10 & 13 & 14 & 17 & 18 & 19 & 20 \\
 3 & 7 & 4 & 5 & 3 & 2 & 7 & 7 & 2 \\
 0 & 0 & 0 & 1 & 3 & 5 & 3 & 3 & 7 \\
\end{tabular}
Example

<table>
<thead>
<tr>
<th>i</th>
<th>s_i</th>
<th>f_i</th>
<th>w_i</th>
<th>OPT[i]</th>
<th>Used[i]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>7</td>
<td>10</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>11</td>
<td>14</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>11</td>
<td>13</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

S = (9, 7, 2)

Segmented Least Squares

- Least Squares
 - Given a set of points in the plane $p_1 = (x_1, y_1), …, p_n = (x_n, y_n)$ with $x_1 < … < x_n$ determine a line L given by $y = ax + b$ that optimizes the totaled squared error

 $$\text{Error}(L, P) = \sum_i (y_i - ax_i - b)^2$$

- A classic problem in statistics
- Optimal solution is known (see text)
- Call this line(P) and its error error(P)

- What if data seems to follow a piece-wise linear model?
Segmented Least Squares

- What if data seems to follow a piece-wise linear model?
- Number of pieces to choose is not obvious
- If we chose \(n-1 \) pieces we could fit with 0 error
 - Not fair
- Add a penalty of \(C \) times the number of pieces to the error to get a total penalty

How do we compute a solution with the smallest possible total penalty?

Recursive idea

- If we knew the point \(p_j \) where the last line segment began then we could solve the problem optimally for points \(p_1, \ldots, p_j \) and combine that with the last segment to get a global optimal solution

Let \(\text{OPT}(i) \) be the optimal penalty for points \(\{p_1, \ldots, p_i\} \)

Total penalty for this solution would be:

\[
\text{Error}(\{p_j, \ldots, p_n\}) + C + \text{OPT}(j-1)
\]

Dynamic Programming Solution

```plaintext
SegmentedLeastSquares(n)
array OPT[0..n], Begin[1..n]
OPT[0] ← 0
for i = 1 to n
    OPT[i] ← Error(\{p_i, \ldots, p_n\}) + C
    Begin[i] ← j
    for j = 2 to i-1
        e ← Error(\{p_j, \ldots, p_i\}) + OPT[j-1]
        if e < OPT[i]
            OPT[i] ← e
            Begin[i] ← j
        endif
    endwhile
endfor
return(OPT[n])
```

Knapsack (Subset-Sum) Problem

- Given:
 - integer \(W \) (knapsack size)
 - \(n \) object sizes \(x_1, x_2, \ldots, x_n \)
- Find:
 - Subset \(S \) of \(\{1, \ldots, n\} \) such that \(\sum_{i \in S} x_i \leq W \)
 - but \(\sum_{i \in S} x_i \) is as large as possible
Recursive Algorithm

- Let $K(n,W)$ denote the problem to solve for W and x_1, x_2, \ldots, x_n
- For $n > 0$,
 - The optimal solution for $K(n,W)$ is the better of the optimal solution for either $K(n-1,W)$ or $x_n + K(n-1,W-x_n)$
- For $n = 0$
 - $K(0,W)$ has a trivial solution of an empty set S with weight 0

Recursive calls

- Recursive calls on list ...3, 4, 7

Common Sub-problems

- Only sub-problems are $K(i,w)$ for
 - $i = 0, 1, \ldots, n$
 - $w = 0, 1, \ldots, W$
- Dynamic programming solution
 - Table entry for each $K(i,w)$
 - OPT - value of optimal solution for first i objects and weight w
 - $belong$ flag - is x_i a part of this solution?
 - Initialize $OPT[0,w]$ for $w = 0, \ldots, W$
 - Compute all $OPT[i,\ast]$ from $OPT[i-1,\ast]$ for $i > 0$

Dynamic Knapsack Algorithm

```plaintext
for w=0 to W; OPT[0,w]← 0; end for
for i=1 to n do
  for w=0 to W do
    OPT[i,w]← OPT[i-1,w]
    belong[i,w]← 0
    if w≥x_i then
      val← x_i + OPT[i,w-x_i]
      if val>OPT[i,w] then
        OPT[i,w]← val
        belong[i,w]← 1
      end if
    end if
  end for
end for
return(OPT[n,W])
```

Time O(nW)

Sample execution on 2, 3, 4, 7 with K=15

- To compute the value OPT of the solution only need to keep the last two rows of OPT at each step
- What about determining the set S?
 - Follow the $belong$ flags O(n) time
- What about space?
Three Steps to Dynamic Programming

- Formulate the answer as a recurrence relation or recursive algorithm
- Show that the number of different values of parameters in the recursive algorithm is "small"
 - e.g., bounded by a low-degree polynomial
- Specify an order of evaluation for the recurrence so that you already have the partial results ready when you need them.

RNA Secondary Structure:

- RNA: sequence of bases
 - String over alphabet \{A, C, G, U\}
 - RNA folds and sticks to itself like a zipper
 - A bonds to U
 - C bonds to G
 - Bends can’t be sharp
 - No twisting or criss-crossing
 - How the bonds line up is called the RNA secondary structure

Recursion Solution

- Try all possible matches for the last base
 - \(\text{OPT}(1..k-1) \) matches \(x_k \)
 - \(\text{OPT}(k+1..j-1) \) matches \(x_j \)
 - Doesn’t start at 1

General form:

\[
\text{OPT}(i..j) = \max \left(\text{OPT}(i..j-1), 1 + \max_{k=1..j-5} \left(\text{OPT}(i..k-1) + \text{OPT}(k+1..j-1) \right) \right)
\]

Input: String \(x_1...x_n \in \{A,C,G,U\}^* \)

Output: Maximum size set \(S \) of pairs \((i,j)\) such that

- \(\{x_i,x_j\} = \{A,U\} \) or \(\{x_i,x_j\} = \{C,G\} \)
- The pairs in \(S \) form a matching
- \(i < j \) (no sharp bends)
- No crossing pairs
 - If \((i,j)\) and \((k,l)\) are in \(S \) then it is not the case that they cross as in \(i < k < j < l \)

ACGAUACUGCAACUCUGGACGACCCAGCGAGGUGUA

RNA Secondary Structure
- 2D Array $OPT(i,j)$ for $i \leq j$ represents optimal # of matches entirely for segment $i..j$
- For $j \leq 4$ set $OPT(i,j)=0$ (no sharp bends)
- Then compute $OPT(i,j)$ values when $j-i=5,6,...,n-1$ in turn using recurrence.
- Return $OPT(1,n)$
- Total of $O(n^2)$ time
- Can also record matches along the way to produce S
- Algorithm is similar to the polynomial-time algorithm for Context-Free Languages based on Chomsky Normal Form from 322
- Both use dynamic programming over intervals

Sequence Alignment: Edit Distance
- Given:
 - Two strings of characters $A=a_1 a_2 ... a_n$ and $B=b_1 b_2 ... b_m$
- Find:
 - The minimum number of edit steps needed to transform A into B where an edit can be:
 - insert a single character
 - delete a single character
 - substitute one character by another

Sequence Alignment vs Edit Distance
- Sequence Alignment
 - Insert corresponds to aligning with a "-" in the first string
 - Cost δ (in our case 1)
 - Delete corresponds to aligning with a "-" in the second string
 - Cost δ (in our case 1)
 - Replacement of an a by a b corresponds to a mismatch
 - Cost α_{ab} (in our case 1 if $a \neq b$ and 0 if $a=b$)
- In Computational Biology this alignment algorithm is attributed to Smith & Waterman

Applications
- "diff" utility – where do two files differ
- Version control & patch distribution – save/send only changes
- Molecular biology
 - Similar sequences often have similar origin and function
 - Similarity often recognizable despite millions or billions of years of evolutionary divergence

Recursive Solution
- Sub-problems: Edit distance problems for all prefixes of A and B that don’t include all of both A and B
- Let $D(i,j)$ be the number of edits required to transform $a_1 a_2 ... a_i$ into $b_1 b_2 ... b_j$
- Clearly $D(0,0)=0$
Computing $D(n,m)$

- Imagine how best sequence handles the last characters a_n and b_m
- If best sequence of operations
 - deletes a_n then $D(n,m) = D(n-1,m)+1$
 - inserts b_m then $D(n,m) = D(n,m-1)+1$
 - replaces a_n by b_m then $D(n,m) = D(n-1,m-1)+1$
- matches a_n and b_m then $D(n,m) = D(n-1,m-1)$

Recursive algorithm $D(n,m)$

```
if n=0 then
  return m
else if m=0 then
  return n
else
  if $a_n=b_m$ then
    replace-cost ← 0
  else
    replace-cost ← 1
  endif
  return(min(D(n-1, m) + 1, D(n, m-1) + 1, D(n-1, m-1) + replace-cost))
```

dynamic programming

```
for $j = 0$ to $m$;
  for $i = 1$ to $n$
    if $a_i = b_j$ then
      $replace-cost ← 0$
    else
      $replace-cost ← 1$
    endif
    $D(i,j) ← min(D(i-1, j) + 1, D(i, j-1) + 1, D(i-1, j-1) + replace-cost)$
  endfor
endfor
```

Example run with AGACATTG and GAGTTA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example run with AGACATTG and GAGTTA

```
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Example run with AGACATTG and GAGTTA

```
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Example run with AGACATTG and GAGTTA

```
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Reading off the operations

- Follow the sequence and use each color of arrow to tell you what operation was performed.
- From the operations can derive an optimal alignment

<table>
<thead>
<tr>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Saving Space

- To compute the distance values we only need the last two rows (or columns)

 \(O(\min(m,n)) \) space
- To compute the alignment/sequence of operations

 seem to need to store all \(O(mn) \) pointers/arrow colors
- Nifty divide and conquer variant that allows one to do this in \(O(\min(m,n)) \) space and retain \(O(mn) \) time

 - In practice the algorithm is usually run on smaller chunks of a large string, e.g. \(m \) and \(n \) are lengths of genes so a few thousand characters

 - Researchers want all alignments that are close to optimal

 - Basic algorithm is run since the whole table of pointers (2 bits each) will fit in RAM
- Ideas are neat, though
Saving space

- Alignment corresponds to a path through the table from lower right to upper left
- Must pass through the middle column
- Recursively compute the entries for the middle column from the left
- If we knew the cost of completing each then we could figure out where the path crossed
- Problem: There are n possible strings to start from.
- Solution: Recursively calculate the right half costs for each entry in this column using alignments starting at the other ends of the two input strings!
- Can reuse the storage on the left when solving the right hand problem

Shortest paths with negative cost edges (Bellman-Ford)

- We want to grow paths from s to t based on the # of edges in the path
- Let $Cost(s,t,i)$ = cost of minimum-length path from s to t using up to i hops.
 - $Cost(v,t,0)$ = 0 if $v=t$
 - $Cost(v,t,i) = \min \{Cost(v,t,i-1), \min_{(v,w) \in E} (C_{vw} + Cost(w,t,i-1))\}$
- Observe that the recursion for $Cost(s,t,i)$ doesn’t change t
 - Only store an entry for each v and i
 - Termed $OPT(v,i)$ in the text
 - Also observe that to compute $OPT(\ast,i)$ we only need $OPT(\ast,i-1)$
 - Can store a current and previous copy in $O(n)$ space.

Bellman-Ford

ShortestPath(G,s,t)

for all $v \in V$

$OPT[v] = \infty$

$OPT[t] = 0$

for $i = 1$ to $n-1$ do

for all $v \in V$ do

$OPT[v] = \min_{v \in \mathcal{E}} (C_{vw} + OPT[w])$

return $OPT[s]$

O(mn) time

Negative cycles

- Claim: There is a negative-cost cycle that can reach t if for some vertex $v \in V$, $Cost(v,t,n) < Cost(v,t,n-1)$
- Proof:
 - We already know that if there aren’t any then we only need paths of length up to $n-1$
 - For the other direction
 - The recurrence computes $Cost(v,i)$ correctly for any number of hops i
 - The recurrence reaches a fixed point if for every $v \in V$, $Cost(v,i,n) = Cost(v,i)$
 - A negative-cost cycle means that eventually some $Cost(v,i)$ gets smaller than any given bound
 - Can’t have a –ve cost cycle if for every $v \in V$, $Cost(v,t,n) = Cost(v,t,n-1)$
Last details

- Can run algorithm and stop early if the OPT and OPT' arrays are ever equal
 - Even better, one can update only neighbors v of vertices w with $OPT[w] = OPT'[w]$
- Can store a successor pointer when we compute OPT
 - Homework assignment

By running for step n we can find some vertex v on a negative cycle and use the successor pointers to find the cycle

Bellman-Ford

![Bellman-Ford graph]

Bellman-Ford

![Bellman-Ford graph]

Bellman-Ford

![Bellman-Ford graph]

Bellman-Ford

![Bellman-Ford graph]
Bellman-Ford with a DAG

Edges only go from lower to higher-numbered vertices
- Update distances in reverse order of topological sort
- Only one pass through vertices required
- $O(n+m)$ time