

Dealing with NP-completeness

Paul Beame

1

What to do if the problem you want to solve is NP-hard

- You might have phrased your problem too generally
 - e.g., in practice, the graphs that actually arise are far from arbitrary
 - maybe they have some special characteristic that allows you to solve the problem in your special case
 - for example the Independent-Set problem is easy on "interval graphs"
 - Exactly the case for interval scheduling!
 - search the literature to see if special cases already solved

2

What to do if the problem you want to solve is NP-hard

- Try to find an approximation algorithm
 - Maybe you can't get the size of the best Vertex Cover but you can find one within a factor of 2 of the best
 - Given graph **G**=(**V**,E), start with an empty cover
 - While there are still edges in E left
 - Choose an edge e={u,v} in E and add both u and v to the cover
 - Remove all edges from E that touch either u or v.
 - Edges chosen don't share any vertices so optimal cover size must be at least # of edges chosen

3

What to do if the problem you want to solve is NP-hard

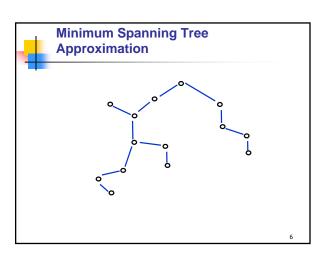
- Polynomial-time approximation algorithms for NP-hard problems can sometimes be ruled out unless P=NP
 - E.g. Coloring Problem: Given a graph G=(V,E) find the smallest k such that G has a k-coloring.
 - No approximation ratio better than 4/3 is possible unless P=NP
 - Otherwise you would have to be able to figure out if a 3-colorable graph can be colored in < 4 colors. i.e. if it can be 3-colored

4

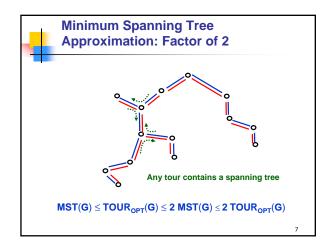
Travelling Sales Problem

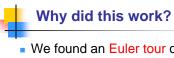
- TSP
 - Given a weighted graph G find of a smallest weight tour that visits all vertices in G
- NP-hard
- Notoriously easy to obtain close to optimal solutions

5



1

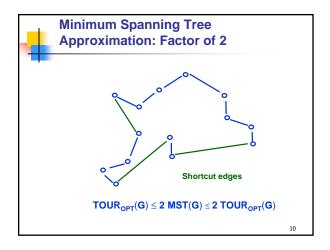




- We found an Euler tour on a graph that used the edges of the original graph (possibly repeated).
- The weight of the tour was the total weight of the new graph.
- Suppose now
 - All edges possible
 - Weights satisfy triangle inequality
 - $\mathbf{c}(\mathbf{u},\mathbf{w}) \leq \mathbf{c}(\mathbf{u},\mathbf{v}) + \mathbf{c}(\mathbf{v},\mathbf{w})$

Minimum Spanning Tree
Approximation: Triangle Inequality

Can shortcut edges
Go to next new vertex
on the Euler tour

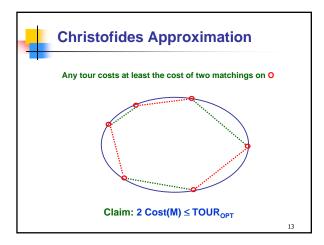


Christofides Approximation

Christofides Algorithm:
A factor 3/2 approximation

Any Eulerian subgraph of the weighted complete graph will do
Eulerian graphs require that all vertices have even degree so

- Christofides Algorithm
 - Compute an MST T
 - Find the set O of odd-degree vertices in T
 - Add a minimum-weight perfect matching M on the vertices in
 O to T to make every vertex have even degree
 - There are an even number of odd-degree vertices!
 - Use an Euler Tour E in T∪M and then shortcut as before
- Claim: TOUR_{OPT}≤ 1.5 Cost(E)



Knapsack Problem

- For any ε >0 can get an algorithm that gets a solution within (1+ε) factor of optimal with running time O(n²(1/ε)²)
 - "Polynomial-Time Approximation Scheme" or PTAS
 - Based on maintaining just the high order bits in the dynamic programming solution.

14

What to do if the problem you want to solve is NP-hard

- More on approximation algorithms
 - Recent research has classified problems based on what kinds of approximations are possible if P≠NP
 - Best: (1+g) factor for any g>0.
 - packing and some scheduling problems, TSP in plane
 - Some fixed constant factor > 1, e.g. 2, 3/2, 100
 - Vertex Cover, TSP in space, other scheduling problems
 - Θ(log n) factor
 - Set Cover, Graph Partitioning problems
 - Worst: Ω(n¹-ε) factor for any ε>0
 - Clique, Independent-Set, Coloring

15

What to do if the problem you want to solve is NP-hard

- Try an algorithm that is provably fast "on average".
 - To even try this one needs a model of what a typical instance is.
 - Typically, people consider "random graphs"
 - e.g. all graphs with a given # of edges are equally likely
 - Problems:
 - real data doesn't look like the random graphs
 - distributions of real data aren't analyzable

16

What to do if the problem you want to solve is NP-hard

- Try to search the space of possible hints/certificates in a more efficient way and hope it is quick enough
 - Backtracking search
 - E.g. For SAT there are 2ⁿ possible truth assignments
 - If we set the truth values one-by-one we might be able to figure out whole parts of the space to avoid,
 - e.g. After setting x₁←1, x₂←0 we don't even need to set x₃ or x₄ to know that it won't satisfy
 (¬x₁ ∨ x₂) ∧ (¬x₂ ∨ x₃) ∧ (x₄ ∨ ¬x₃) ∧ (x₁ ∨ ¬x₄)
 - Related technique: branch-and-bound
 - Backtracking search can be very effective even with exponential worst-case time
 - For example, the best SAT algorithms used in practice are all variants on backtracking search and can solve surprisingly large problems – more later

17

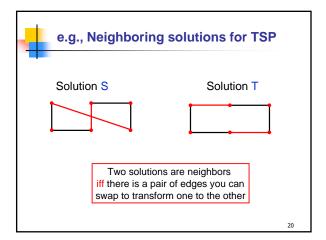
What to do if the problem you want to solve is NP-hard

- Use heuristic algorithms and hope they give good answers
 - No guarantees of quality
 - Many different types of heuristic algorithms
 - Many different options, especially for optimization problems, such as TSP, where we want the best solution.
 - We'll mention several on following slides

18

Heuristic algorithms for **NP-hard** problems

- local search for optimization problems
 - need a notion of two solutions being neighbors
 - Start at an arbitrary solution \$
 - While there is a neighbor **T** of **S** that is better than S
 - S←T
- Usually fast but often gets stuck in a local optimum and misses the global optimum
 - With some notions of neighbor can take a long time in the worst case



Heuristic algorithms for **NP-hard** problems

- randomized local search
 - start local search several times from random starting points and take the best answer found from each point
 - more expensive than plain local search but usually much better answers
- simulated annealing
 - like local search but at each step sometimes move to a worse neighbor with some probability

 - eignibot with some probability

 probability of going to a worse neighbor is set to decrease
 with time as, presumably, solution is closer to optimal

 helps avoid getting stuck in a local optimum but often slow
 to converge (much more expensive than randomized local
 search)
 - analogy with slow cooling to get to lowest energy state in a crystal (or in forging a metal)

21

Heuristic algorithms for **NP-hard** problems

- genetic algorithms
 - view each solution as a string (analogy with DNA)
 - maintain a population of good solutions
 - allow random mutations of single characters of individual solutions
 - combine two solutions by taking part of one and part of another (analogy with crossover in sexual reproduction)
 - get rid of solutions that have the worst values and make multiple copies of solutions that have the best values (analogy with natural selection -- survival of the fittest).
 - little evidence that they work well and they are usually
 - as much religion as science

22

Heuristic algorithms

- artificial neural networks
 - based on very elementary model of human neurons
 - Set up a circuit of artificial neurons
 - each artificial neuron is an analog circuit gate whose computation depends on a set of connection strengths
 - Train the circuit
 - Adjust the connection strengths of the neurons by giving many positive & negative training examples and seeing if it behaves correctly
 - The network is now ready to use
 - useful for ill-defined classification problems such as optical character recognition but not typical cut & dried problems

Other directions

- DNA computing
 - Each possible hint for an NP problem is represented as a string of DNA
 - fill a test tube with all possible hints
 - View verification algorithm as a series of tests
 - . e.g. checking each clause is satisfied in case of Satisfiability
 - For each test in turn
 - use lab operations to filter out all DNA strings that fail the test (works in parallel on all strings; uses PCR)
 - If any string remains the answer is a YES. ■ Relies on fact that Avogadro's # 6 x 10²³ is large to get enough
 - Error-prone & problem sizes typically very small!

Other directions

- Quantum computing
 - Use physical processes at the quantum level to implement "weird" kinds of circuit gates
 - unitary transformations
 - Quantum objects can be in a superposition of many pure states at once

 - states at once

 can have n objects together in a superposition of 2ⁿ states

 Each quantum circuit gate operates on the whole superposition of states at once

 inherent parallelism but classical randomized algorithms have a similar parallelism: not enough on its own

 Advantage over classical: parallel copies interfere with each other.
 - Need totally new kinds of algorithms to work well. Theoretically able to factor efficiently but huge practical problems: errors, decoherence.

25