What to do if the problem you want to solve is NP-hard

- You might have phrased your problem too generally
 - e.g., in practice, the graphs that actually arise are far from arbitrary
 - maybe they have some special characteristic that allows you to solve the problem in your special case
 - for example the Independent-Set problem is easy on "interval graphs"
 - Exactly the case for interval scheduling!
 - search the literature to see if special cases already solved

What to do if the problem you want to solve is NP-hard

- Try to find an approximation algorithm
 - Maybe you can’t get the size of the best Vertex Cover but you can find one within a factor of 2 of the best
 - Given graph $G=(V,E)$, start with an empty cover
 - While there are still edges in E left
 - Choose an edge $e=(u,v)$ in E and add both u and v to the cover
 - Remove all edges from E that touch either u or v.
 - Edges chosen don’t share any vertices so optimal cover size must be at least # of edges chosen

Traveling Sales Problem

- TSP
 - Given a weighted graph G find of a smallest weight tour that visits all vertices in G
 - NP-hard
 - Notoriously easy to obtain close to optimal solutions

Minimum Spanning Tree Approximation

- Polynomial-time approximation algorithms for NP-hard problems can sometimes be ruled out unless $P=NP$
 - E.g. Coloring Problem: Given a graph $G=(V,E)$ find the smallest k such that G has a k-coloring.
 - No approximation ratio better than $4/3$ is possible unless $P=NP$
 - Otherwise you would have to be able to figure out if a 3-colorable graph can be colored in < 4 colors. i.e. if it can be 3-colored
Minimum Spanning Tree Approximation: Factor of 2

Any tour contains a spanning tree

MST(G) ≤ TOUR_{OPT}(G) ≤ 2 MST(G) ≤ 2 TOUR_{OPT}(G)

Why did this work?

- We found an Euler tour on a graph that used the edges of the original graph (possibly repeated).
- The weight of the tour was the total weight of the new graph.
- Suppose now
 - All edges possible
 - Weights satisfy triangle inequality
 \[c(u, w) ≤ c(u, v) + c(v, w) \]

Minimum Spanning Tree Approximation: Triangle Inequality

Can shortcut edges
 - Go to next new vertex on the Euler tour

Minimum Spanning Tree Approximation: Factor of 2

Shortcut edges

TOUR_{OPT}(G) ≤ 2 MST(G) ≤ 2 TOUR_{OPT}(G)

Christofides Algorithm: A factor 3/2 approximation

- Any Eulerian subgraph of the weighted complete graph will do
 - Eulerian graphs require that all vertices have even degree so

Christofides Algorithm

- Compute an MST T
- Find the set O of odd-degree vertices in T
- Add a minimum-weight perfect matching M on the vertices in O to T to make every vertex have even degree
 - There are an even number of odd-degree vertices!
- Use an Euler Tour E in T∪M and then shortcut as before

Claim: TOUR_{OPT} ≤ 1.5 Cost(E)

Christofides Approximation
Christofides Approximation

Any tour costs at least the cost of two matchings on O

Claim: $2 \text{Cost}(M) \leq \text{TOUR}\text{OPT}$

Knapsack Problem

- For any $\epsilon > 0$ can get an algorithm that gets a solution within $(1+\epsilon)$ factor of optimal with running time $O(n^2(1/\epsilon)^2)$
 - "Polynomial-Time Approximation Scheme" or PTAS
 - Based on maintaining just the high order bits in the dynamic programming solution.

What to do if the problem you want to solve is NP-hard

- Try an algorithm that is provably fast "on average".
 - To even try this one needs a model of what a typical instance is.
 - Typically, people consider "random graphs" e.g. all graphs with a given # of edges are equally likely
 - Problems: real data doesn’t look like the random graphs
 - Distributions of real data aren’t analyzable

- Use heuristic algorithms and hope they give good answers
 - No guarantees of quality
 - Many different types of heuristic algorithms
 - Many different options, especially for optimization problems, such as TSP, where we want the best solution.
 - We’ll mention several on following slides
Heuristic algorithms for NP-hard problems

- **local search** for optimization problems
 - need a notion of two solutions being neighbors
 - Start at an arbitrary solution S
 - While there is a neighbor T of S that is better than S
 - $S \leftarrow T$
 - Usually fast but often gets stuck in a local optimum and misses the global optimum
 - With some notions of neighbor can take a long time in the worst case

Heuristic algorithms for NP-hard problems

- **randomized local search**
 - start local search several times from random starting points and take the best answer found from each point
 - more expensive than plain local search but usually much better answers
- **simulated annealing**
 - like local search but at each step sometimes move to a worse neighbor with some probability
 - probability of going to a worse neighbor is set to decrease with time as, presumably, solution is closer to optimal
 - helps avoid getting stuck in a local optimum but often slow to converge (much more expensive than randomized local search)
 - analogy with slow cooling to get to lowest energy state in a crystal (or in forging a metal)

Heuristic algorithms for NP-hard problems

- **genetic algorithms**
 - view each solution as a string (analogy with DNA)
 - maintain a population of good solutions
 - allow random mutations of single characters of individual solutions
 - combine two solutions by taking part of one and part of another (analogy with crossover in sexual reproduction)
 - get rid of solutions that have the worst values and make multiple copies of solutions that have the best values (analogy with natural selection – survival of the fittest).
 - little evidence that they work well and they are usually very slow
 - as much religion as science

Heuristic algorithms

- **artificial neural networks**
 - based on very elementary model of human neurons
 - Set up a circuit of artificial neurons
 - each artificial neuron is an analog circuit gate whose computation depends on a set of connection strengths
 - Train the circuit
 - Adjust the connection strengths of the neurons by giving many positive & negative training examples and seeing if it behaves correctly
 - The network is now ready to use
 - useful for ill-defined classification problems such as optical character recognition but not typical cut & dried problems

Other directions

- **DNA computing**
 - Each possible hint for an NP problem is represented as a string of DNA
 - fill a test tube with all possible hints
 - View verification algorithm as a series of tests
 - e.g. checking each clause is satisfied in case of Satisfiability
 - For each test in turn
 - use lab operations to filter out all DNA strings that fail the test (works in parallel on all strings; uses PCR)
 - If any string remains the answer is a YES
 - Relies on fact that Avogadro’s # 6×10^{23} is large to get enough strings to fit in a test-tube.
 - Error-prone & problem sizes typically very small
Other directions

- Quantum computing
 - Use physical processes at the quantum level to implement "weird" kinds of circuit gates
 - Unitary transformations
 - Quantum objects can be in a superposition of many pure states at once
 - Can have \(n \) objects together in a superposition of \(2^n \) states
 - Each quantum circuit gate operates on the whole superposition of states at once
 - Inherent parallelism but classical randomized algorithms have a similar parallelism: not enough on its own
 - Advantage over classical: parallel copies interfere with each other.

- Need totally new kinds of algorithms to work well. Theoretically able to factor efficiently but huge practical problems: errors, decoherence.