CSE421: Review

Larry Ruzzo
Summer 2007

© W.L.Ruzzo & UW CSE 1997-2007
Complexity, I

Asymptotic Analysis
Best/average/worst cases
Upper/Lower Bounds
Big O, Theta, Omega
Analysis methods
 loops
 recurrence relations
 common data structures, subroutines
 “progress” arguments and general brute cleverness…
Graph Algorithms

Graphs

- Representation (edge list/adjacency matrix)
- Breadth/depth first search
- Bipartitness/2-Colorability
- DAGS and topological ordering
- Articulation points/Biconnected components
Design Paradigms

Greedy

Dynamic Programming
recursive solution, redundant subproblems, few
do all in careful order and tabulate
(usually far superior to “memoization”)

Divide & Conquer
recursive solution
superlinear work
balanced subproblems
recurrence relations, solutions, Master Theorem
Examples

Greedy
 Interval Scheduling Problems
 Huffman Codes
 Examples where greedy fails (stamps/change, scheduling, knap, RNA,...)

Divide & Conquer
 Merge sort
 Closest pair of points
 Integer multiplication (Karatsuba)
 Matrix Multiplication (Strassen)
Examples

Dynamic programming
 Fibonacci
 Making change/Stamps, Knapsack
 Weighted Interval Scheduling
 RNA
 String Alignment

Flow and matching
 Residual graph, augmenting paths, max-flow/min-cut,
 Ford-Fulkerson and Edmonds-Karp algorithms,
 integrality, reducing bipartite matching to flow
Complexity, II

P vs NP

- Big-O and poly vs exponential growth
- Definition of NP - hints and verifiers; nondeterminism
- Example problems from slides, reading & hw
 - SAT, 3-SAT, circuit SAT, vertex cover, quadratic Diophantine equations,
 - clique, independent set, TSP, Hamilton cycle, coloring, max cut, knapsack
- \(P \subseteq NP \subseteq Exp \) (and worse)
- Definition(s) of (polynomial time) reduction
- \(SAT \leq_P VertexCover \) example (how, why correct, why \(\leq_P \), implications)
- Definition of NP-completeness
- NP-completeness proofs
- 2x, 1.5x approximations to Euclidean TSP
Some Typical Exam Questions

Give $O()$ bound on $17n^*(n-3+\log n)$

Give $O()$ bound on some code

{for $i=1$ to n {for j ...}}

True/False: If X is $O(n^2)$, then it’s rarely more than $n^3 + 14$ steps.

Give a run time recurrence for a recursive alg, or solve a simple one

Simulate any of the algs we’ve studied

Give an alg for problem X, maybe a variant of one we’ve studied, or prove it’s in NP

Understand parts of correctness proof for an algorithm or reduction

Implications of NP-completeness

Reductions

NP-completeness proofs