Dynamic Programming

Outline:
General Principles
Easy Examples – Fibonacci, Licking Stamps
Meatier examples
 RNA Structure prediction
 Weighted interval scheduling
 Maybe others

Some Algorithm Design Techniques, I

General overall idea
 Reduce solving a problem to a smaller problem or problems of the same type
Greedy algorithms
 Used when one needs to build something a piece at a time
 Repeatedly make the greedy choice - the one that looks the best right away
 e.g. closest pair in TSP search
 Usually fast if they work (but often don't)

Some Algorithm Design Techniques, II

Divide & Conquer
 Reduce problem to one or more sub-problems of the same type
 Typically, each sub-problem is at most a constant fraction of the size of the original problem
 e.g. Mergesort, Binary Search, Strassen's Algorithm, Quicksort (kind of)
Some Algorithm Design Techniques, III

Dynamic Programming
Give a solution of a problem using smaller sub-problems, e.g. a recursive solution
Useful when the same sub-problems show up again and again in the solution

“Dynamic Programming”
Program — A plan or procedure for dealing with some matter

— Webster’s New World Dictionary

Dynamic Programming History
Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.
- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.
 - “it’s impossible to use dynamic in a pejorative sense”
 - “something not even a Congressman could object to”

A very simple case:
Computing Fibonacci Numbers
Recall $F_n = F_{n-1} + F_{n-2}$ and $F_0 = 0, F_1 = 1$

Recursive algorithm:
```plaintext
Fibo(n)
  if n=0 then return(0)
  else if n=1 then return(1)
  else return(Fibo(n-1)+Fibo(n-2))
```
Memo-ization (Caching)

Remember all values from previous recursive calls
Before recursive call, test to see if value has already been computed
Dynamic Programming
NOT memoized; instead, convert memoized alg from a recursive one to an iterative one
(top-down → bottom-up)

Fibonacci - Memoized Version
initialize: F[i] ← undefined for all i
F[0] ← 0
F[1] ← 1
FibMemo(n):
if(F[n] undefined) {
 F[n] ← FibMemo(n-2)+FibMemo(n-1)
}
return(F[n])
Fibonacci - Dynamic Programming Version

FiboDP(n):
- \(F[0] \leftarrow 0 \)
- \(F[1] \leftarrow 1 \)
- for \(i=2 \) to \(n \) do
 - \(F[i] \leftarrow F[i-1]+F[i-2] \)
- endfor
- return(\(F[n] \))

For this problem, keeping only last 2 entries instead of full array suffices, but about the same speed.

Dynamic Programming

Useful when
- Same recursive sub-problems occur repeatedly
- Parameters of these recursive calls anticipated
- The solution to whole problem can be solved without knowing the *internal* details of how the sub-problems are solved
- "principle of optimality"

Making change

Given:
- Large supply of 1¢, 5¢, 10¢, 25¢, 50¢ coins
- An amount \(N \)

Problem: choose fewest coins totaling \(N \)

Cashier’s (greedy) algorithm works:
- Give as many as possible of the next biggest denomination

Licking Stamps

Given:
- Large supply of 5¢, 4¢, and 1¢ stamps
- An amount \(N \)

Problem: choose fewest stamps totaling \(N \)
How to Lick 27¢

<table>
<thead>
<tr>
<th># of 5¢ stamps</th>
<th># of 4¢ stamps</th>
<th># of 1¢ stamps</th>
<th>total number</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Morals: Greed doesn’t pay; success of “cashier’s alg” depends on coin denominations

A Simple Algorithm

At most N stamps needed, etc.

for a = 0, ..., N {
 for b = 0, ..., N {
 for c = 0, ..., N {
 if (5a+4b+c == N & a+b+c is new min)
 {retain (a,b,c);}
 }
 }
}

output retained triple;

Time: \(O(N^3)\)
(Not too hard to see some optimizations, but we’re after bigger fish…)

Better Idea

Theorem: If last stamp in an opt sol has value \(v\), then previous stamps are opt sol for \(N-v\).

Proof: if not, we could improve the solution for \(N\) by using opt for \(N-v\).

Alg: for \(i = 1\) to \(n\):

\[
M(i) = \min \begin{cases}
0 & i=0 \\
1+M(i-5) & i \geq 5 \\
1+M(i-4) & i \geq 4 \\
1+M(i-1) & i \geq 1
\end{cases}
\]

where \(M(i)\) = min number of stamps totaling \(i\)¢

New Idea: Recursion

\[
M(i) = \min \begin{cases}
0 & i=0 \\
1+M(i-5) & i \geq 5 \\
1+M(i-4) & i \geq 4 \\
1+M(i-1) & i \geq 1
\end{cases}
\]

Time: > \(3^{N/5}\)
Another New Idea:
Avoid Recomputation
Tabulate values of solved subproblems
Top-down: “memoization”
Bottom up:
for i = 0, ..., N do \(M[i] = \min \{ 0, 1 + M[i-5], 1 + M[i-4], 1 + M[i-1] \} \); \(1 + \text{Min}(3, 1, 3) = 2 \)
Time: \(O(N) \)

Finding How Many Stamps

Finding Which Stamps:
Trace-Back

Trace-Back
Way 1: tabulate all
add data structure storing back-pointers indicating which predecessor gave the min. (more space, maybe less time)
Way 2: re-compute just what’s needed
\(\text{TraceBack}(i) : \)
\(\text{if } i = 0 \text{ then return; } \)
\(\text{for } d \text{ in } \{1, 4, 5\} \text{ do } \)
\(\text{if } M[i] = 1 + M[i - d] \text{ then break; } \)
\(\text{print } d; \)
\(\text{TraceBack}(i - d); \)
Complexity Note

O(N) is better than O(N^3) or O(3^{N/5})

But still exponential in input size (log N bits)

(E.g., miserable if N is 64 bits – c \cdot 2^{64} steps & 2^{64} memory.)

Note: can do in O(1) for 5¢, 4¢, and 1¢ but not in general. See “NP-Completeness” later.

Elements of Dynamic Programming

What feature did we use?
What should we look for to use again?

“Optimal Substructure”
Optimal solution contains optimal subproblems
A non-example: min (number of stamps mod 2)

“Repeated Subproblems”
The same subproblems arise in various ways