CSE 421: Introduction to Algorithms

I: Overview

Summer 2007

Larry Ruzzo
CSE 421, Su '07: Introduction to Algorithms

Lecture: EEB 025 (sectional)
MW 10:50-12:20

Office Hours: W? 1:00-2:00? CSE 554 206-543-6298

Instructor: Larry Ruzzo, ruzzo at cs
TA: Zizhen Yao, yzizhen at cs TBA

Course Email: cse421a_su07@u.washington.edu. Use this list to ask questions about homework, lectures, etc. The instructor and TA are subscribed to this list. All messages to this list should be directed to the instructor and/or TA. You can send messages to cse421a_su07Ă¬@u.washington.edu.

Catalog Description: Techniques for analyzing the performance of algorithms, including complexity bounds on computational complexity. Particular topics include sorting, searching, graph algorithms, computational geometry, applications in bioinformatics, and optimization. Prerequisites: CSE 321 (Introduction to Algorithms) or equivalent.

Prerequisites: CSE 321 (Introduction to Algorithms) or equivalent. Homework will be a mix of paper & pencil exercises and programming. Overall weights 40%, midterm 15%, final 30%.

Submissions and course materials are due at the start of class on the due date.

Textbook:

- Algorithm Design by Jon Kleinberg and Eva Tardos. Addison Wesley, 2006. (Available from U Book Store, Amazon, etc.)
What you’ll have to do

Homework (≈55% of grade)
 Programming
 Some small projects
 Written homework assignments
 English exposition and pseudo-code
 Analysis and argument as well as design

Midterm / Final Exam (≈15% / 30%)

Late Policy:
 Papers and/or electronic turnins are due at the start of class on the due date.
Textbook

What the course is about

Design of Algorithms
 design methods
 common or important types of problems
 analysis of algorithms - efficiency
 correctness proofs
What the course is about

Complexity, NP-completeness and intractability

solving problems in principle is not enough
algorithms must be efficient
some problems have no efficient solution

NP-complete problems
important & useful class of problems whose solutions
(seemingly) cannot be found efficiently, but can be
checked easily
Very Rough Division of Time

Algorithms (7 weeks)
- Analysis of Algorithms
- Basic Algorithmic Design Techniques
- Graph Algorithms

Complexity & NP-completeness (2 weeks)

Check online schedule page for (evolving) details
Complexity Example

Cryptography (e.g. RSA, SSL in browsers)

Secret: p,q prime, say 512 bits each
Public: n which equals p x q, 1024 bits

In principle

there is an algorithm that given n will find p and q:
try all 2^{512} possible p’s, an astronomical number

In practice

no efficient algorithm is known for this problem
security of RSA depends on this fact
Algorithms versus Machines

We all know about Moore’s Law and the exponential improvements in hardware...

Ex: sparse linear equations over 25 years

10 orders of magnitude improvement!
Algorithms or Hardware?

25 years progress solving sparse linear systems

hardware: 4 orders of magnitude

Source: Sandia, via M. Schultz
Algorithms or Hardware?

25 years progress solving sparse linear systems

hardware: 4 orders of magnitude

software: 6 orders of magnitude

Source: Sandia, via M. Schultz
Algorithms or Hardware?

The N-Body Problem:

In 30 years
10^7 hardware
10^{10} software
Algorithm: definition

Procedure to accomplish a task or solve a well-specified problem

Well-specified: know what all possible inputs look like and what output looks like given them

“accomplish” via simple, well-defined steps

Ex: sorting names (via comparison)

Ex: checking for primality (via +, -, *, /, ≤)
Algorithms: a sample problem

Printed circuit-board company has a robot arm that solders components to the board

Time: proportional to total distance the arm must move from initial rest position around the board and back to the initial position

For each board design, find best order to do the soldering
Printed Circuit Board
Printed Circuit Board
A Well-defined Problem

Input: Given a set S of n points in the plane
Output: The shortest cycle tour that visits each point in the set S.

Better known as “TSP”

How might you solve it?
Nearest Neighbor Heuristic

Start at some point \(p_0 \)
Walk first to its nearest neighbor \(p_1 \)
Repeatedly walk to the nearest unvisited neighbor \(p_2, \) then \(p_3, \ldots \) until all points have been visited
Then walk back to \(p_0 \)

heuristic: A rule of thumb, simplification, or educated guess that reduces or limits the search for solutions in domains that are difficult and poorly understood. May be good, but usually *not* guaranteed to give the best or fastest solution.
Nearest Neighbor Heuristic
An input where it works badly

length ~ 84

p_0
An input where it works badly

optimal soln for this example
length ~ 64
Revised idea - Closest pairs first

Repeatedly join the closest pair of points
(s.t. result can still be part of a single loop in the end. I.e., join endpoints, but not points in middle, of path segments already created.)

How does this work on our bad example?
Another bad example
Another bad example

\[6 + \sqrt{10} = 9.16\]

vs

8
Something that works

For each of the $n! = n(n-1)(n-2)\ldots 1$ orderings of the points, check the length of the cycle you get
Keep the best one
Two Notes

The two incorrect algorithms were greedy

- Often very natural & tempting ideas
- They make choices that look great “locally” (and never reconsider them)
- When greed works, the algorithms are typically efficient
- BUT: often does not work - you get boxed in

Our correct alg avoids this, but is incredibly slow

- $20!$ is so large that checking one billion per second would take 2.4 billion seconds (around 70 years!)
Something that “works” (differently)

1. Find Min Spanning Tree
Something that “works” (differently)

2. Walk around it
Something that “works” (differently)

3. Take shortcuts (instead of revisiting)
Something that “works” (differently): Guaranteed Approximation

Does it seem wacky?
Maybe, but it’s always within a factor of 2 of the best tour!

deleting one edge from best tour gives a spanning tree, so \(\text{Min spanning tree} < \text{best tour} \)

\(\text{best tour} \leq \text{wacky tour} \leq 2 \times \text{MST} < 2 \times \text{best} \)
The Morals of the Story

Simple problems can be hard
 Factoring, TSP
Simple ideas don’t always work
 Nearest neighbor, closest pair heuristics
Simple algorithms can be very slow
 Brute-force factoring, TSP
Changing your objective can be good
 Guaranteed approximation for TSP