CSE 421: Introduction to Algorithms

Complexity and Representative Problems

Paul Beame

Measuring efficiency:
The RAM model

- RAM = Random Access Machine
- Time = # of instructions executed in an ideal assembly language
 - each simple operation (+, *, =, if, call) takes one time step
 - each memory access takes one time step

Complexity analysis

- Problem size N
 - **Worst-case complexity**: max # steps algorithm takes on any input of size N
 - **Best-case complexity**: min # steps algorithm takes on any input of size N
 - **Average-case complexity**: avg # steps algorithm takes on inputs of size N

Stable Matching

- Problem size
 - $N=2n^2$ words
 - $2n$ people each with a preference list of length n
 - $2n^2 \log n$ bits
 - specifying an ordering for each preference list takes $\log n$ bits
- Brute force algorithm
 - Try all n possible matchings
- Gale-Shapley Algorithm
 - n^2 iterations, each costing constant time
 - For each man an array listing the women in preference order
 - For each woman an array listing the preferences indexed by the names of the men
 - An array listing the current partner (if any) for each woman
 - An array listing the preference index of the last woman each man proposed to (if any)

Complexity

- The complexity of an algorithm associates a number $T(N)$, the best/worst/average-case time the algorithm takes, with each problem size N.
- Mathematically,
 - T is a function that maps positive integers giving problem size to positive real numbers giving number of steps.

Efficient = Polynomial Time

- Polynomial time
 - Running time $T(N) \leq cN^k + d$ for some $c, d, k > 0$
- Why polynomial time?
 - If problem size grows by at most a constant factor then so does the running time
 - E.g. $T(2N) \leq c(2N)^k + d \leq 2^k(cN^k + d)$
 - Polynomial-time is exactly the set of running times that have this property
 - Typical running times are small degree polynomials, mostly less than N^3, at worst N^6, not N^{100}
Given two positive functions f and g

- $f(N)$ is $O(g(N))$ iff there is a constant $c > 0$ so that $f(N)$ is eventually always $\leq c g(N)$
- $f(N)$ is $o(g(N))$ iff the ratio $f(N)/g(N)$ goes to 0 as N gets large
- $f(N)$ is $\Omega(g(N))$ iff there is a constant $\varepsilon > 0$ so that $f(N)$ is $\geq \varepsilon g(N)$ for infinitely many values of N
- $f(N)$ is $\Theta(g(N))$ iff $f(N)$ is $O(g(N))$ and $f(N)$ is $\Omega(g(N))$

Note: The definition of Ω is the same as "$f(N)$ is not $o(g(N))$".

5 Representative Problems

- **Interval Scheduling**
 - Single resource
 - Reservation requests
 - Of form “Can I reserve it from start time s to finish time f?"
 - $s < f$
 - **Find**: maximum number of requests that can be scheduled so that no two reservations have the resource at the same time

Interval Scheduling

- Formally
 - Requests 1, 2, …, n
 - Request i has start time s_i and finish time $f_i > s_i$
 - Requests i and j are **compatible** iff either
 - $f_i \leq s_j$
 - or, request j is for a time entirely before request i
 - $f_j \leq s_i$
 - Set A of requests is **compatible** iff every pair of requests i,j: A, i,j is compatible
 - **Goal**: Find maximum size subset A of compatible requests

Interval Scheduling

- We shall see that an optimal solution can be found using a “greedy algorithm”
 - Myopic kind of algorithm that seems to have no look-ahead
 - These algorithms only work when the problem has a special kind of structure
 - When they do work they are typically very efficient
Weighted Interval Scheduling

Same problem as interval scheduling except that each request i also has an associated value or weight w_i.
- w_i might be the amount of money we get from renting out the resource for that time period.
- w_i might also be the amount of time the resource is being used.

Goal: Find compatible subset A of requests with maximum total weight.

Weighted Interval Scheduling

Ordinary interval scheduling is a special case of this problem.
- Take all $w_i = 1$.
- Problem is quite different though.
 - E.g., one weight might dwarf all others.
 - “Greedy algorithms” don’t work.

Solution: “Dynamic Programming”
- builds up optimal solutions from smaller problems using a compact table to store them.

Bipartite Matching

A graph $G=(V,E)$ is bipartite iff V consists of two disjoint pieces X and Y such that every edge e in E is of the form (x, y) where $x \in X$ and $y \in Y$.
- Similar to stable matching situation but in that case all possible edges were present.
- $M \subseteq E$ is a matching in G iff no two edges in M share a vertex.

Goal: Find a matching M in G of maximum possible size.

Bipartite Matching

Models assignment problems.
- X represents jobs, Y represents machines.
- X represents professors, Y represents courses.
- If $|X|=|Y|=n$.
 - G has perfect matching iff maximum matching has size n.

Solution: polynomial-time algorithm using “augmentation” technique.
- Also used for solving more general class of network flow problems.

Independent Set

Given a graph $G=(V,E)$:
- A set $I \subseteq V$ is independent iff no two nodes in I are joined by an edge.

Goal: Find an independent subset I in G of maximum possible size.

Independent Set

Generalizes:
- Interval Scheduling
 - Vertices in the graph are the requests.
 - Vertices are joined by an edge if they are not compatible.
- Bipartite Matching
 - Given bipartite graph $G=(V,E)$ create new graph $G'=(V',E')$ where $V' = E$.
 - Two elements of V' (which are edges in G) are joined if they share an endpoint in G.

Bipartite Matching vs Independent Set

\[G = (U \cup V, E) \quad \text{and} \quad G' = (V', E') \]

Independent Set

- No polynomial-time algorithm is known
- But to convince someone that there was a large independent set all you’d need to do is show it to them
 - they can easily convince themselves that the set is large enough and independent
 - Convincing someone that there isn’t one seems much harder
- We will show that Independent Set is \(\text{NP-complete} \)
 - Class of all the hardest problems that have the property above

Competitive Facility Location

- Two players competing for market share in a geographic area
 - e.g., McDonald’s, Burger King
- Rules:
 - Region is divided into \(n \) zones, \(1, \ldots, n \)
 - Each zone \(i \) has a value \(b_i \)
 - Revenue derived from opening franchise in that zone
 - No adjacent zones may contain a franchise
 - i.e., zoning regulations limit density
 - Players alternate opening franchises
- Find: Given a target total value \(B \) is there a strategy for the second player that always achieves \(\geq B \)?

Competitive Facility Location

- Model geography by
 - A graph \(G = (V, E) \) where
 - \(V \) is the set \{1, \ldots, n\} of zones
 - \(E \) is the set of pairs \((i,j)\) such that \(i \) and \(j \) are adjacent zones
- Observe:
 - The set of zones with franchises will form an independent set in \(G \)

Competitive Facility Location

Target \(B = 20 \) achievable?

What about \(B = 25 \)?