CSE 421: Introduction to Algorithms

Graph Traversal

Paul Beame

Directed Graph $G = (V,E)$

Generic Graph Traversal Algorithm

Find: set R of vertices reachable from $s \in V$

Reachable(s):

$R \leftarrow \{s\}$

While there is a $(u,v) \in E$ where $u \in R$ and $v \notin R$

Add v to R

Graph Traversal

- Learn the basic structure of a graph
- Walk from a fixed starting vertex s to find all vertices reachable from s
- Three states of vertices
 - unvisited
 - visited/discovered
 - fully-explored

Generic Traversal Always Works

Claim: At termination R is the set of nodes reachable from s

Proof

- For every node $v \in R$ there is a path from s to v
- Suppose there is a node $v \in R$ reachable from s via a path P
 - Take first node v on P such that $v \notin R$
 - Predecessor u of v in P satisfies
 - $u \in R$
 - $(u,v) \in E$
 - But this contradicts the fact that the algorithm exited the while loop.
Breadth-First Search

- Completely explore the vertices in order of their distance from s.
- Naturally implemented using a queue.

BFS(s)

Global initialization: mark all vertices "unvisited".

- **BFS(s)**
 - mark s "visited"; $R ← \{s\}$; layer $L_0 ← \{s\}$
 - while L_i not empty
 - $L_{i+1} ← ∅$
 - for each $u ∈ L_i$
 - for each edge $\{u, v\}$
 - if v is "unvisited"
 - mark v "visited"
 - Add v to set R and to layer L_{i+1}
 - mark u "fully-explored"

Properties of BFS(v)

- BFS(s) visits x if and only if there is a path in G from s to x.
- Edges followed to undiscovered vertices define a "breadth first spanning tree" of G.
- Layer i in this tree, L_i is those vertices u such that the shortest path in G from the root s is of length i.
- On undirected graphs, all non-tree edges join vertices on the same or adjacent layers.

Properties of BFS

- On undirected graphs, all non-tree edges join vertices on the same or adjacent layers.
- Suppose not.
 - Then there would be vertices (x, y) such that $x ∈ L_i$ and $y ∈ L_j$ and $j > i + 1$.
 - Then, when vertices incident to x are considered in BFS, y would be added to L_{i+1} and not to L_j.

BFS Application: Shortest Paths

- Tree gives shortest paths from start vertex.
- Can label by distances from start.

Graph Search Application: Connected Components

- Want to answer questions of the form:
 - **Given**: vertices u and v in G
 - Is there a path from u to v?
- **Idea**: create array A such that $A[u] = \text{smallest numbered vertex that is connected to } u$

Q: Why not create an array $\text{Path}(u,v)$?
Graph Search Application: Connected Components

- initial state: all v unvisited
- for $s = 1$ to n do
 - if state(s) ≠ "fully-explored" then
 - BFS(s): setting $A[u] = s$ for each u found
 - (and marking u visited/fully-explored)
 - endif
- endfor
- Total cost: $O(n+m)$
 - each vertex is touched once in this outer procedure and the edges examined in the different BFS runs are disjoint
 - works also with Depth First Search

DFS(u) – Recursive version

Global Initialization: mark all vertices "unvisited"

- DFS(u)
 - mark u "visited" and add u to R
 - for each edge (u,v)
 - if (v is "unvisited")
 - DFS(v)
 - end for
 - mark u "fully-explored"

Properties of DFS(s)

- Like BFS(s):
 - DFS(s) visits x if and only if there is a path in G
 - Edges into undiscovered vertices define a "depth first spanning tree" of G
- Unlike the BFS tree:
 - the DFS spanning tree isn't minimum depth
 - its levels don't reflect min distance from the root
 - non-tree edges never join vertices on the same or adjacent levels
- BUT...

Non-tree edges

- All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree
- No cross edges.

No cross edges in DFS on undirected graphs

- Claim: During DFS(x) every vertex marked visited is a descendant of x in the DFS tree T
- Claim: For every x,y in the DFS tree T, if (x,y) is an edge not in T then one of x or y is an ancestor of the other in T
- Proof:
 - One of x or y is visited first, suppose WLOG that x is visited first and therefore DFS(x) was called before DFS(y)
 - During DFS(x), the edge (x,y) is examined
 - Since (x,y) is a not an edge of T, y was visited when the edge (x,y) was examined during DFS(x)
 - Therefore y was visited during the call to DFS(x) so y is a descendant of x.

Applications of Graph Traversal: Bipartiteness Testing

- Easy: A graph G is not bipartite if it contains an odd length cycle
- WLOG: G is connected
 - Otherwise run on each component
- Simple idea: start coloring nodes starting at a given node s
 - Color s red
 - Color all neighbors of s blue
 - Color all their neighbors red
 - If you ever hit a node that was already colored
 - the same color as you want to color it, ignore it
 - the opposite color, output error
BFS gives Bipartiteness

- Run BFS assigning all vertices from layer L_i the color $i \mod 2$
 - i.e. red if they are in an even layer, blue if in an odd layer
- If there is an edge joining two vertices from the same layer then output “Not Bipartite”

Why does it work?

- u and v have a common ancestor
- Cycle length $2(j-i)+1$

DFS(v) for a directed graph

DFS(v)

Properties of Directed DFS

- Before DFS(s) returns, it visits all previously unvisited vertices reachable via directed paths from s
- Every cycle contains a back edge in the DFS tree

Directed Acyclic Graphs

- A directed graph $G=(V,E)$ is acyclic if it has no directed cycles
- Terminology: A directed acyclic graph is also called a DAG
Topological Sort

- **Given:** a directed acyclic graph (DAG) $G = (V, E)$
- **Output:** numbering of the vertices of G with distinct numbers from 1 to n so edges only go from lower number to higher numbered vertices

- **Applications**
 - nodes represent tasks
 - edges represent precedence between tasks
 - topological sort gives a sequential schedule for solving them

In-degree 0 vertices

- Every DAG has a vertex of in-degree 0
- **Proof:** By contradiction
 - Suppose every vertex has some incoming edge
 - Consider following procedure:

    ```
    while (true) do
      v ← some predecessor of v
    
    After $n+1$ steps where $n = |V|$ there will be a repeated vertex
    - This yields a cycle, contradicting that it is a DAG
    ```

Topological Sort

- Can do using DFS
- Alternative simpler idea:
 - Any vertex of in-degree 0 can be given number 1 to start
 - Remove it from the graph and then give a vertex of in-degree 0 number 2, etc.
Implementing Topological Sort

- Go through all edges, computing in-degree for each vertex \(O(m+n)\)
- Maintain a queue (or stack) of vertices of in-degree 0
- Remove any vertex in queue and number it
- When a vertex is removed, decrease in-degree of each of its neighbors by 1 and add them to the queue if their degree drops to 0
- Total cost \(O(m+n)\)