Dynamic Programming

- Give a solution of a problem using smaller sub-problems where all the possible sub-problems are determined in advance
- Useful when the same sub-problems show up again and again in the solution

A simple case: Computing Fibonacci Numbers

- Recall \(F_n = F_{n-1} + F_{n-2} \) and \(F_0 = 0, F_1 = 1 \)
- Recursive algorithm:
 - \(\text{Fibo}(n) \)
 - if \(n = 0 \) then return(0)
 - else if \(n = 1 \) then return(1)
 - else return(\(\text{Fibo}(n-1) + \text{Fibo}(n-2) \))

Full call tree

Memoization (Caching)

- Remember all values from previous recursive calls
- Before recursive call, test to see if value has already been computed

Dynamic Programming
- Convert memoized algorithm from a recursive one to an iterative one
Fibonacci
Dynamic Programming Version

- FiboDP(n):
 - \(F[0] \leftarrow 0 \)
 - \(F[1] \leftarrow 1 \)
 - for \(i = 2 \) to \(n \) do
 - \(F[i] \leftarrow F[i-1] + F[i-2] \)
 - endfor
 - return(\(F[n] \))

Fibonacci: Space-Saving Dynamic Programming

- FiboDP(n):
 - prev \(\leftarrow 0 \)
 - curr \(\leftarrow 1 \)
 - for \(i = 2 \) to \(n \) do
 - temp \(\leftarrow curr \)
 - curr \(\leftarrow curr + prev \)
 - prev \(\leftarrow temp \)
 - endfor
 - return(curr)

Dynamic Programming

- Useful when
 - same recursive sub-problems occur repeatedly
 - Can anticipate the parameters of these recursive calls
 - The solution to whole problem can be figured out with knowing the internal details of how the sub-problems are solved
 - principle of optimality
 - "Optimal solutions to the sub-problems suffice for optimal solution to the whole problem"

Dynamic Programming

Three Steps to Dynamic Programming

- Formulate the answer as a recurrence relation or recursive algorithm
- Show that the number of different values of parameters in the recursive calls is "small"
 - e.g., bounded by a low-degree polynomial
 - Can use memoization
- Specify an order of evaluation for the recurrence so that you already have the partial results ready when you need them.

Weighted Interval Scheduling

- Same problem as interval scheduling except that each request \(i \) also has an associated value or weight \(w_i \)
 - \(w_i \) might be
 - amount of money we get from renting out the resource for that time period
 - amount of time the resource is being used \(w_i = f_i - s_i \)
- Goal: Find compatible subset \(S \) of requests with maximum total weight

Greedy Algorithms for Weighted Interval Scheduling?

- No criterion seems to work
 - Earliest start time \(s_i \)
 - Doesn't work
 - Shortest request time \(f_i - s_i \)
 - Doesn't work
 - Fewest conflicts
 - Doesn't work
 - Earliest finish time \(f_i \)
 - Doesn't work
 - Largest weight \(w_i \)
 - Doesn't work
Towards Dynamic Programming: Step 1 – A Recursive Algorithm

Suppose that like ordinary interval scheduling, we have first sorted the requests by finish time f_i, so $f_1 \leq f_2 \leq \ldots \leq f_n$.

Say request i comes before request j if $i < j$.

For any request j, let $p(j)$ be:
- the largest-numbered request before j that is compatible with j.
- or 0 if no such request exists.

Therefore, $\{1, \ldots, p(j)\}$ is precisely the set of requests before j that are compatible with j.

Two cases depending on whether an optimal solution O includes request n.

If it does include request n, then all other requests in O must be contained in $\{1, \ldots, p(n)\}$.
- Not only that!
 - Any set of requests in $\{1, \ldots, p(n)\}$ will be compatible with request n.
 - So in this case, the optimal solution O must contain an optimal solution for $\{1, \ldots, p(n)\}$.

In this case, the optimal solution O must contain an optimal solution for $\{1, \ldots, p(n)\}$.

“Principle of Optimality”

Two cases depending on whether an optimal solution O includes request n.

If it does not include request n, then all requests in O must be contained in $\{1, \ldots, n-1\}$.
- Not only that!
 - The optimal solution O must contain an optimal solution for $\{1, \ldots, n-1\}$.
 - “Principle of Optimality”

All subproblems involve requests $\{1, \ldots, i\}$ for some i.

For $i = 1, \ldots, n$ let $OPT(i)$ be the weight of the optimal solution to the problem $\{1, \ldots, i\}$.

The two cases give:

$$OPT(n) = \max(w_n + OPT(p(n)), OPT(n-1))$$

Also:
- $n \in O$ iff $w_n + OPT(p(n)) > OPT(n-1)$

Sort requests and compute array $p[i]$ for each $i = 1, \ldots, n$.

ComputeOpt(n)
- if $n = 0$ then return(0)
- else
 - $u \leftarrow$ ComputeOpt($p(n)$)
 - $v \leftarrow$ ComputeOpt($n-1$)
 - if $w_n + u > v$ then return($w_n + u$)
 - else return(v)
- endif

ComputeOpt(n) can take exponential time in the worst case.
- 2^n calls if $p(i) = i-1$ for every i.

There are only n possible parameters to ComputeOpt.

Store these answers in an array $OPT[n]$ and only recompute when necessary.

Memoization

Initialize $OPT[i] = 0$ for $i = 1, \ldots, n$.

Towards Dynamic Programming: Step 1 – A Recursive Algorithm

Towards Dynamic Programming: Step 2 – Small # of parameters
Dynamic Programming: Step 2 – Memoization

ComputeOpt(n)
if n=0 then return(0)
else
u←MComputeOpt(p[n])
v←MComputeOpt(n-1)
if w_n+u>v then
return(w_n+u)
else return(v)
endif

MComputeOpt(n)
if OPT[n]=0 then
v←ComputeOpt(n)
OPT[n]←v
else
return(OPT[n])
endif

Producing the Solution

IterativeComputeOptSolution(n)
array OPT[0..n], Used[1..n]
OPT[0]←0
for i=1 to n
if w_i+OPT[p[i]]>OPT[i-1] then
OPT[i]←w_i+OPT[p[i]]
Used[i]←1
else
OPT[i]←OPT[i-1]
Used[i]←0
endif
endfor

Example

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>
| p[i]| OPT[i]| Used[i]|}

Example

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>
| p[i]| OPT[i]| Used[i]|}
Example

<table>
<thead>
<tr>
<th>s_i</th>
<th>f_i</th>
<th>w_i</th>
<th>OPT[i]</th>
<th>Used[i]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>11</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

S = (9, 7, 2)

Segmented Least Squares

- **Least Squares**
 - Given a set P of n points in the plane $p_1 = (x_1, y_1), \ldots, p_n = (x_n, y_n)$ with $x_1 < \ldots < x_n$ determine a line L given by $y = ax + b$ that optimizes the totaled 'squared error'
 - $\text{Error}(L, P) = \sum (y_i - (ax_i + b))^2$
 - A classic problem in statistics
 - Optimal solution is known (see text)
 - Call this line(P) and its error error(P)

- **What if data seems to follow a piece-wise linear model?**

Segmented Least Squares

- **Least Squares**
 - Given a set P of n points in the plane $p_1 = (x_1, y_1), \ldots, p_n = (x_n, y_n)$ with $x_1 < \ldots < x_n$ determine a line L given by $y = ax + b$ that optimizes the totaled 'squared error'
 - $\text{Error}(L, P) = \sum (y_i - (ax_i + b))^2$
 - A classic problem in statistics
 - Optimal solution is known (see text)
 - Call this line(P) and its error error(P)

- **What if data seems to follow a piece-wise linear model?**
Segmented Least Squares

- What if data seems to follow a piece-wise linear model?
- Number of pieces to choose is not obvious
- If we chose $n-1$ pieces we could fit with 0 error
 - Not fair
- Add a penalty of C times the number of pieces to the error to get a total penalty
- How do we compute a solution with the smallest possible total penalty?

Recursive idea

- If we knew the point p_j where the last line segment began then we could solve the problem optimally for points $p_1,...,p_j$ and combine that with the last segment to get a global optimal solution

Let $OPT(i)$ be the optimal penalty for points $\{p_1,...,p_i\}$
- Total penalty for this solution would be $Error(p_j,...,p_n) + C + OPT(j-1)$

Dynamic Programming Solution

Array $OPT[0..n]$. Begin[1..n]

Find Segments i to n
S to \emptyset
while i to 1
do compute Line($\text{Begin}[i]$, p_i)
output ($\text{Begin}[i]$, p_i), Line i to $\text{Begin}[i]$
endwhile

Knapsack (Subset-Sum) Problem

Given:
- integer W (knapsack size)
- n object sizes x_1, x_2, ..., x_n
Find:
- Subset S of $\{1,...,n\}$ such that $\sum_{i \in S} x_i \leq W$
 but $\sum_{i \in S} x_i$ is as large as possible
Recursive Algorithm

- Let $K(n,W)$ denote the problem to solve for W and x_1, x_2, \ldots, x_n
- For $n>0$,
 - The optimal solution for $K(n,W)$ is the better of the optimal solution for either $K(n-1,W)$ or $x_n+K(n-1,W-x_n)$
- For $n=0$
 - $K(0,W)$ has a trivial solution of an empty set S with weight 0

Recursive calls

- Recursive calls on list ..., 3, 4, 7

Dynamic Knapsack Algorithm

```plaintext
for w=0 to W; OPT[0,w]← 0; end for
for i=1 to n do
for w=0 to W do
  OPT[i,w]← OPT[i-1,w]
  if w≥x_i then
    val ← x_i+OPT[i-1,w-x_i]
    if val>OPT[i-1,w] then
      OPT[i,w]← val
      belong[i,w]← 1
    end if
  end if
end for
end for
return(OPT[n,W])
```

Time $O(nW)$

Saving Space

- To compute the value OPT of the solution only need to keep the last two rows of OPT at each step
- What about determining the set S?
 - Follow the $belong$ flags $O(n)$ time
- What about space?
Three Steps to Dynamic Programming

- Formulate the answer as a recurrence relation or recursive algorithm
- Show that the number of different values of parameters in the recursive algorithm is "small"
 - e.g., bounded by a low-degree polynomial
- Specify an order of evaluation for the recurrence so that you already have the partial results ready when you need them.

RNA Secondary Structure: Dynamic Programming on Intervals

- RNA: sequence of bases
- String over alphabet {A, C, G, U}
- UGUACGAGCUGGAAACCCGAGGUGUA
- RNA folds and sticks to itself like a zipper
 - A bonds to U
 - C bonds to G
 - Bends can't be sharp
 - No twisting or criss-crossing
- How the bonds line up is called the RNA secondary structure

RNA Secondary Structure

- Input: String $x_1 \ldots x_n \in \{A,C,G,U\}^*$
- Output: Maximum size set S of pairs (i,j) such that
 - $(x_i, x_j) = \{A,U\}$ or $(x_i, x_j) = \{C,G\}$
 - The pairs in S form a matching
 - $i < j$ (no sharp bends)
 - No crossing pairs
 - If (i,j) and (k,l) are in S then it is not the case that they cross as in $i < k < j < l$

Recursion Solution

- Try all possible matches for the last base

$$\text{OPT}(1..k) = 1 + \max_{x_k \text{ matches } x_i} \text{OPT}(1..k-1) + \text{OPT}(k+1..j-1)$$

General form:

$$\text{OPT}(i..j) = 1 + \max_{x_k \text{ matches } x_i} \text{OPT}(i..k-1) + \text{OPT}(k+1..j-1)$$

RNA Secondary Structure

- 2D Array $OPT(i,j)$ for $1 \leq j \leq n$ represents optimal # of matches entirely for segment $i..j$
- For $j \leq 4$ set $OPT(i,j)=0$ (no sharp bends)
- Then compute $OPT(i,j)$ values when $j=5,6,...,n-1$ in turn using recurrence.
- Return $OPT(1,n)$
- Total of $O(n^2)$ time
- Can also record matches along the way to produce S

- Algorithm is similar to the polynomial-time algorithm for Context-Free Languages based on Chomsky Normal Form from 322.
- Both use dynamic programming over intervals.

Sequence Alignment: Edit Distance

- Given:
 - Two strings of characters $A=a_1 a_2 ... a_n$ and $B=b_1 b_2 ... b_m$
- Find:
 - The minimum number of edit steps needed to transform A into B where an edit can be:
 - insert a single character
 - delete a single character
 - substitute one character by another

Sequence Alignment vs Edit Distance

- Sequence Alignment
 - Insert corresponds to aligning with a "−" in the first string
 - Cost δ (in our case 1)
 - Delete corresponds to aligning with a "−" in the second string
 - Cost δ (in our case 1)
 - Replacement of an a by a b corresponds to a mismatch
 - Cost α_{ab} (in our case 1 if $a \neq b$ and 0 if $a=b$)
- In Computational Biology this alignment algorithm is attributed to Smith & Waterman

Applications

- "diff" utility – where do two files differ
- Version control & patch distribution – save/send only changes
- Molecular biology
 - Similar sequences often have similar origin and function
 - Similarity often recognizable despite millions or billions of years of evolutionary divergence

Recursive Solution

- Sub-problems: Edit distance problems for all prefixes of A and B that don’t include all of both A and B
- Let $D(i,j)$ be the number of edits required to transform $a_1 a_2 ... a_i$ into $b_1 b_2 ... b_j$
- Clearly $D(0,0)=0$
Computing $D(n,m)$

- Imagine how best sequence handles the last characters a_n and b_m
- If best sequence of operations
 - deletes a_n then $D(n,m) = D(n-1,m) + 1$
 - inserts b_m then $D(n,m) = D(n,m-1) + 1$
 - replaces a_n by b_m then $D(n,m) = D(n-1,m-1) + 1$
 - matches a_n and b_m then $D(n,m) = D(n-1,m-1)$

Recursive algorithm $D(n,m)$

```plaintext
if n=0 then
  return (m)
elseif m=0 then
  return (n)
else
  if $a_n=b_m$ then
    replace-cost ← 0
    cost of substitution of $a_n$ by $b_m$ (if used)
  else
    replace-cost ← 1
  endif
  return (min { $D(n-1, m) + 1$, $D(n, m-1) + 1$, $D(n-1, m-1) + \text{replace-cost}$ })
```

Dynamic Programming

```
for j = 0 to m; D(0,j) ← j; endfor
for i = 1 to n; D(i,0) ← i; endfor
for j = 1 to m
  for i = 1 to n
    if $a_i=b_j$ then
      replace-cost ← 0
    else
      replace-cost ← 1
    endif
    D(i,j) ← min (D(i-1,j) + 1, D(i,j-1) + 1, D(i-1,j-1) + \text{replace-cost})
  endfor
endfor
```

Example run with AGACATTG and GAGTTA

```
```

```
```

Example run with AGACATTG and GAGTTA

```
Example run with AGACATTG and GAGTTA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example run with AGACATTG and GAGTTA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Example run with AGACATTG and GAGTTA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Reading off the operations

- Follow the sequence and use each color of arrow to tell you what operation was performed.
- From the operations can derive an optimal alignment

```
A G A C A T T G
_ G A G _ T T A
```

Saving Space

- To compute the distance values we only need the last two rows (or columns)
  - \(O(\min(m,n))\) space
- To compute the alignment/sequence of operations
  - seem to need to store all \(O(mn)\) pointers/arrow colors
- Nifty divide and conquer variant that allows one to do this in \(O(\min(m,n))\) space and retain \(O(mn)\) time
  - In practice the algorithm is usually run on smaller chunks of a large string, e.g. \(m\) and \(n\) are lengths of genes so a few thousand characters
  - Researchers want all alignments that are close to optimal
  - Basic algorithm is run since the whole table of pointers (2 bits each) will fit in RAM
- Ideas are neat, though
## Saving space

- Alignment corresponds to a path through the table from lower right to upper left
- Must pass through the middle column
- Recursively compute the entries for the middle column from the left
- If we knew the cost of completing each then we could figure out where the path crossed

### Problem
- There are \( n \) possible strings to start from.

### Solution
- Recursively calculate the right half costs for each entry in this column using alignments starting at the other ends of the two input strings!
- Can reuse the storage on the left when solving the right hand problem

## Shortest paths with negative cost edges (Bellman-Ford)

- We want to grow paths from \( s \) to \( t \) based on the # of edges in the path
- Let \( \text{Cost}(s,t,i) \) = cost of minimum-length path from \( s \) to \( t \) using up to \( i \) hops.
  - \( \text{Cost}(v,t,0) = 0 \) if \( v = t \)
  - \( \text{Cost}(v,t,0) = \infty \) otherwise
  - \( \text{Cost}(v,t,i) = \min(\text{Cost}(v,t,i-1), \min_{v,w \in E}(c_{vw} + \text{Cost}(w,t,i-1))) \)

### Bellman-Ford

- Observe that the recursion for \( \text{Cost}(s,t,i) \) doesn’t change
- Only store an entry for each \( v \) and \( i \)
  - Termed \( \text{OPT}(v,i) \) in the text
- Also observe that to compute \( \text{OPT}(\ast,i) \) we only need \( \text{OPT}(\ast,i-1) \)
  - Can store a current and previous copy in \( O(n) \) space.

### Negative cycles

- **Claim:** There is a negative-cost cycle that can reach \( t \) iff for some vertex \( v \in V \), \( \text{Cost}(v,t,n) < \text{Cost}(v,t,n-1) \)
- **Proof:**
  - We already know that if there aren’t any then we only need paths of length up to \( n-1 \)
  - For the other direction
    - The recurrence computes \( \text{Cost}(v,t,i) \) correctly for any number of hops \( i \)
    - The recurrence reaches a fixed point if for every \( v \in V \), \( \text{Cost}(v,t,i) = \text{Cost}(v,t,i-1) \)
    - A negative-cost cycle means that eventually some \( \text{Cost}(v,t,i) \) gets smaller than any given bound
    - Can’t have a –ve cost cycle if for every \( v \in V \), \( \text{Cost}(v,t,n) = \text{Cost}(v,t,n-1) \)
**Last details**

- Can run algorithm and stop early if the `OPT` and `OPT'` arrays are ever equal
  - Even better, one can update only neighbors `v` of vertices `w` with `OPT[w] = OPT'[w]`
- Can store a successor pointer when we compute `OPT`
  - Homework assignment

- By running for step `n` we can find some vertex `v` on a negative cycle and use the successor pointers to find the cycle

---

**Bellman-Ford**

```
-2

0 5 6
7 -3 4 8 2 7
9 7
```

---

```
-2

0 5 6
7 -3 4 8 2 7
9 7
```

---

```
-2

0 5 6
7 -3 4 8 2 7
9 7
```

---

```
-2

0 5 6
7 -3 4 8 2 7
9 7
```

---

```
-2

0 5 6
7 -3 4 8 2 7
9 7
```

---

```
-2

0 5 6
7 -3 4 8 2 7
9 7
```
Bellman-Ford

Edges only go from lower to higher-numbered vertices
• Update distances in reverse order of topological sort
• Only one pass through vertices required
• $O(n+m)$ time

Bellman-Ford with a DAG

Edges only go from lower to higher-numbered vertices
• Update distances in reverse order of topological sort
• Only one pass through vertices required
• $O(n+m)$ time