CSE 421
Algorithms
Richard Anderson
Lecture 28
NP-Completeness

Populating the NP-Completeness Universe
• Circuit Sat \(\leq_p \) 3-SAT
• 3-SAT \(\leq_p \) Independent Set
• 3-SAT \(\leq_p \) Vertex Cover
• Independent Set \(\leq_p \) Clique
• 3-SAT \(\leq_p \) Hamiltonian Circuit
• Hamiltonian Circuit \(\leq_p \) Traveling Salesman
• 3-SAT \(\leq_p \) Integer Linear Programming
• 3-SAT \(\leq_p \) Graph Coloring
• 3-SAT \(\leq_p \) Subset Sum
• Subset Sum \(\leq_p \) Scheduling with Release times and deadlines

Cook’s Theorem
• The Circuit Satisfiability Problem is NP-Complete
• Circuit Satisfiability
 – Given a boolean circuit, determine if there is an assignment of boolean values to the input to make the output true

Proof of Cook’s Theorem
• Reduce an arbitrary problem Y in NP to X
• Let A be a non-deterministic polynomial time algorithm for Y
• Convert A to a circuit, so that Y is a Yes instance iff and only if the circuit is satisfiable

Satisfiability
• Given a boolean formula, does there exist a truth assignment to the variables to make the expression true

Circuit SAT
Find a satisfying assignment

Definitions

- **Boolean variable:** x_1, \ldots, x_n
- **Term:** x_i or its negation $\neg x_i$
- **Clause:** disjunction of terms
 - t_1 or t_2 or \ldots t_j
- **Problem:**
 - Given a collection of clauses C_1, \ldots, C_k, does there exist a truth assignment that makes all the clauses true
 - $(x_1$ or $\neg x_2)$, $(\neg x_1$ or $\neg x_3)$, $(x_2$ or $\neg x_3)$

3-SAT

- **Each clause has exactly 3 terms
- **Variables:** x_1, \ldots, x_n
- **Clauses C_1, \ldots, C_k**
 - $C_j = (t_{j1}$ or t_{j2} or $t_{j3})$
- **Fact:** Every instance of SAT can be converted in polynomial time to an equivalent instance of 3-SAT

Find a satisfying truth assignment

$(x || y || z) \& \& (x || y || z) \& \& (x || y) \& \& (x || y) \& \& (y || z) \& \& (y || z)$

Theorem: CircuitSat \leq_P 3-SAT

Theorem: 3-SAT \leq_P IndSet

Sample Problems

- **Independent Set**
 - Graph $G = (V, E)$, a subset S of the vertices is independent if there are no edges between vertices in S
Vertex Cover

- **Vertex Cover**
 - Graph $G = (V, E)$, a subset S of the vertices is a vertex cover if every edge in E has at least one endpoint in S.

IS \leq_P VC

- Lemma: A set S is independent iff $V-S$ is a vertex cover.
- To reduce IS to VC, we show that we can determine if a graph has an independent set of size K by testing for a vertex cover of size $n - K$.

Clique

- **Clique**
 - Graph $G = (V, E)$, a subset S of the vertices is a clique if there is an edge between every pair of vertices in S.

Complement of a Graph

- **Defn:** $G'=(V,E')$ is the complement of $G=(V,E)$ if (u,v) is in E' iff (u,v) is not in E.
- Construct the complement.

IS \leq_P Clique

- Lemma: S is Independent in G iff S is a Clique in the complement of G.
- To reduce IS to Clique, we compute the complement of the graph. The complement has a clique of size K iff the original graph has an independent set of size K.

Find an maximum independent set S

Show that $V-S$ is a vertex cover
Hamiltonian Circuit Problem

• Hamiltonian Circuit – a simple cycle including all the vertices of the graph

Thm: Hamiltonian Circuit is NP Complete

• Reduction from 3-SAT

Traveling Salesman Problem

• Given a complete graph with edge weights, determine the shortest tour that includes all of the vertices (visit each vertex exactly once, and get back to the starting point)

Thm: HC \leq_p TSP