Outline

- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem

Network Flow Definitions

- Capacity
- Source, Sink
- Capacity Condition
- Conservation Condition
- Value of a flow

Flow Example

Flow assignment and the residual graph
Network Flow Definitions

• Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
• Capacities on the edges, $c(e) \geq 0$
• Problem, assign flows $f(e)$ to the edges such that:
 – $0 \leq f(e) \leq c(e)$
 – Flow is conserved at vertices other than s and t
 • Flow conservation: flow going into a vertex equals the flow going out
 – The flow leaving the source is as large as possible

Flow Example

Find a maximum flow

Augmenting Path Algorithm

• Augmenting path
 – Vertices v_1, v_2, \ldots, v_k
 • $v_1 = s, v_k = t$
 • Possible to add b units of flow between v_j and v_{j+1} for $j = 1 \ldots k-1$
Residual Graph

• Flow graph showing the remaining capacity
• Flow graph G, Residual Graph G_R
 – G: edge e from u to v with capacity c and flow f
 – G_R: edge e' from u to v with capacity $c - f$
 – G_R: edge e'' from v to u with capacity f

Build the residual graph

Augmenting Path Lemma

• Let $P = v_1, v_2, \ldots, v_k$ be a path from s to t with minimum capacity b in the residual graph.
• b units of flow can be added along the path P in the flow graph.