Shortest Path Problem

- Dijkstra’s Single Source Shortest Paths Algorithm
 - \(O(m \log n)\) time, positive cost edges
- General case – handling negative edges
- If there exists a negative cost cycle, the shortest path is not defined
- Bellman-Ford Algorithm
 - \(O(mn)\) time for graphs with negative cost edges

Lemma

- If a graph has no negative cost cycles, then the shortest paths are simple paths
- Shortest paths have at most \(n-1\) edges

Shortest paths with a fixed number of edges

- Find the shortest path from \(v\) to \(w\) with exactly \(k\) edges

Express as a recurrence

- \(\text{Opt}_k(w) = \min_x [\text{Opt}_{k-1}(x) + c_{xw}]\)
- \(\text{Opt}_0(w) = 0\) if \(v = w\) and infinity otherwise

Algorithm, Version 1

```
foreach w
    M[0, w] = infinity;
    M[0, v] = 0;
    for i = 1 to n-1
        foreach w
            M[i, w] = min\(x\)\(M[i-1, x] + \text{cost}(x, w)\):
```
Algorithm, Version 2

```plaintext
foreach w
    M[0, w] = infinity;
    M[0, v] = 0;
for i = 1 to n-1
    foreach w
        M[i, w] = min(M[i-1, w], min_x(M[i-1,x] + cost[x,w]))
```

Algorithm, Version 3

```plaintext
foreach w
    M[w] = infinity;
    M[v] = 0;
for i = 1 to n-1
    foreach w
        M[w] = min(M[w], min_x(M[x] + cost[x,w]))
```

Correctness Proof for Algorithm 3

- Key lemma – at the end of iteration i, for all w, M[w] <= M[i, w]:

- Reconstructing the path:
 - Set P[w] = x, whenever M[w] is updated from vertex x

If the pointer graph has a cycle, then the graph has a negative cost cycle

- If P[w] = x then M[w] >= M[x] + cost(x,w)
 - Equal when w is updated
 - M[x] could be reduced after update
- Let v_1, v_2, ..., v_k be a cycle in the pointer graph with (v_k, v_1) the last edge added
 - Just before the update
 - M[v_j] >= M[v_{j+1}] + cost(v_{j+1}, v_j) for j < k
 - M[v_k] > M[v_1] + cost(v_1, v_k)
 - Adding everything up
 - 0 > cost(v_1, v_2) + cost(v_2, v_3) + ... + cost(v_k, v_1)

Negative Cycles

- If the pointer graph has a cycle, then the graph has a negative cycle
- Therefore: if the graph has no negative cycles, then the pointer graph has no negative cycles

Finding negative cost cycles

- What if you want to find negative cost cycles?
Foreign Exchange Arbitrage

<table>
<thead>
<tr>
<th></th>
<th>USD</th>
<th>EUR</th>
<th>CAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>USD</td>
<td>1.2</td>
<td>0.6</td>
<td>1.2</td>
</tr>
<tr>
<td>EUR</td>
<td>1.2</td>
<td>1.6</td>
<td>0.8</td>
</tr>
<tr>
<td>CAD</td>
<td>0.8</td>
<td>0.6</td>
<td>0.8</td>
</tr>
</tbody>
</table>