Dynamic Programming

- Weighted Interval Scheduling
- Given a collection of intervals \(I_1, \ldots, I_n \) with weights \(w_1, \ldots, w_n \), choose a maximum weight set of non-overlapping intervals

Recursive Algorithm

Intervals sorted by finish time
\(p[i] \) is the index of the last interval which finishes before \(i \) starts

Optimality Condition

- \(\text{Opt}[j] \) is the maximum weight independent set of intervals \(I_1, I_2, \ldots, I_j \)

Algorithm

\[
\text{MaxValue}(j) = \\
\text{if } j = 0 \text{ return } 0 \\
\text{else return } \max(\text{MaxValue}(j-1), w_j + \text{MaxValue}(p[j]))
\]

Run time

- What is the worst case run time of \(\text{MaxValue} \)
- Design a worst case input
A better algorithm

MaxValue(j) =
if j = 0 return 0;
else if M[j] != -1 return M[j];
else
 M[j] = max(MaxValue(j-1),w_{j} + MaxValue(p[j]));
 return M[j];

Iterative Algorithm

Express the MaxValue algorithm as an
iterative algorithm

MaxValue {

}

Fill in the array with the Opt values

Opt[j] = max (Opt[j – 1], w_{j} + Opt[p[j]])

Computing the solution

Opt[j] = max (Opt[j – 1], w_{j} + Opt[p[j]])

Dynamic Programming

• The most important algorithmic technique
covered in CSE 421

• Key ideas
 – Express solution in terms of a polynomial
 number of sub problems
 – Order sub problems to avoid recomputation

Optimal linear interpolation

Error = \sum(y_{i} – ax_{i} – b)^2
What is the optimal linear interpolation with three line segments

What is the optimal linear interpolation with two line segments

What is the optimal linear interpolation with \(n \) line segments

Notation
- Points \(p_1, p_2, \ldots, p_n \) ordered by \(x \)-coordinate \((p_i = (x_i, y_i)) \)
- \(E_{i,j} \) is the least squares error for the optimal line interpolating \(p_i, \ldots, p_j \)

Optimal interpolation with two segments
- Give an equation for the optimal interpolation of \(p_1, \ldots, p_n \) with two line segments

- \(E_{i,j} \) is the least squares error for the optimal line interpolating \(p_i, \ldots, p_j \)

Optimal interpolation with \(k \) segments
- Optimal segmentation with three segments
 - \(\text{Min}_{i,j} \{E_{i,j} + E_{j,n} + E_{i,n} \} \)
 - \(O(n^2) \) combinations considered
- Generalization to \(k \) segments leads to considering \(O(n^{k-1}) \) combinations
Optimal sub-solution property

Optimal solution with \(k \) segments extends an optimal solution of \(k-1 \) segments on a smaller problem.

Optimal multi-segment interpolation

Compute \(\text{Opt}[k, j] \) for \(0 < k < j < n \)

for \(j := 1 \) to \(n \)

\[\text{Opt}[1, j] = E_{1,j} \]

for \(k := 2 \) to \(n-1 \)

for \(j := 2 \) to \(n \)

\[t := E_{1,j} \]

for \(i := 1 \) to \(j-1 \)

\[t = \min(t, \text{Opt}[k-1, i] + E_{i,j}) \]

\[\text{Opt}[k, j] = t \]