FFT, Convolution and Polynomial Multiplication

- FFT: $O(n \log n)$ algorithm
 - Evaluate a polynomial of degree n at n points in $O(n \log n)$ time
- Polynomial Multiplication: $O(n \log n)$ time

Complex Analysis

- Polar coordinates: $r e^{i \theta}$
- $e^{i \theta} = \cos \theta + i \sin \theta$
- a is an n^{th} root of unity if $a^n = 1$
- Square roots of unity: $+1$, -1
- Fourth roots of unity: $+1$, -1, i, $-i$.
 - Eighth roots of unity: $+1$, -1, i, $-i$, β, $-\beta$, $i\beta$, $-i\beta$ where $\beta = \sqrt{2}$

$e^{2\pi ki/n}$

- $e^{2i} = 1$
- $e^{i} = -1$
- n^{th} roots of unity: $e^{2\pi ki/n}$ for $k = 0 \ldots n-1$
- Notation: $\omega_{k,n} = e^{2\pi ki/n}$
- Interesting fact:
 $$1 + \omega_{k,n} + \omega_{2k,n} + \omega_{3k,n} + \ldots + \omega_{n-1k,n} = 0$$
 for $k \neq 0$

FFT Overview

- Polynomial interpolation
 - Given $n+1$ points (x_i, y_i), there is a unique polynomial P of degree at most n which satisfies $P(x_i) = y_i$

Polynomial Multiplication

n-1 degree polynomials
$$A(x) = a_0 + a_1x + a_2x^2 + \ldots + a_{n-1}x^{n-1}$$
$$B(x) = b_0 + b_1x + b_2x^2 + \ldots + b_{n-1}x^{n-1}$$

$C(x) = A(x)B(x)$
$$C(x) = c_0 + c_1x + c_2x^2 + \ldots + c_{2n-2}x^{2n-2}$$

Given p_1, p_2, \ldots, p_n

$A(p_1), A(p_2), \ldots, A(p_n)$
$B(p_1), B(p_2), \ldots, B(p_n)$
$C(p_1), C(p_2), \ldots, C(p_n)$

$C(p) = A(p)B(p)$
FFT

- Polynomial $A(x) = a_0 + a_1x + \ldots + a_{n-1}x^{n-1}$
- Compute $A(\omega_{j,n})$ for $j = 0, \ldots, n-1$
- For simplicity, n is a power of 2

Useful trick

$$A(x) = a_0 + a_1x + a_2x^2 + \ldots + a_{n-1}x^{n-1}$$
$$A_{\text{even}}(x) = a_0 + a_2x + a_4x^2 + \ldots + a_{n-2}x^{(n-2)/2}$$
$$A_{\text{odd}}(x) = a_1 + a_3x + a_5x^2 + \ldots + a_{n-1}x^{(n-2)/2}$$
Show: $A(x) = A_{\text{even}}(x^2) + x A_{\text{odd}}(x^2)$

Lemma: $\omega_{2,j,2n}^2 = \omega_{j,n}$

Squares of 2^nth roots of unity are nth roots of unity

FFT Algorithm

// Evaluate the $2n^{-1}$th degree polynomial A at
// $\omega_{0,2n}, \omega_{1,2n}, \omega_{2,2n}, \ldots, \omega_{2n-1,2n}$
FFT(A, $2n$)

Recursively compute FFT(A_{even}, n)
Recursively compute FFT(A_{odd}, n)

for $j = 0$ to $2n-1$
$$A(\omega_{j,2n}) = A_{\text{even}}(\omega_{2j,2n}) + \omega_{j,2n}A_{\text{odd}}(\omega_{2j,2n})$$

Polynomial Multiplication

- n^{-1}th degree polynomials A and B
- Evaluate A and B at $\omega_{0,2n}, \omega_{1,2n}, \ldots, \omega_{2n-1,2n}$
- Compute $C(\omega_{j,2n})$ for $j = 0$ to $2n-1$
- We know the value of a $2n-2^{th}$ degree polynomial at $2n$ points – this determines a unique polynomial, we just need to determine the coefficients

Now the magic happens . . .

$$C(x) = c_0 + c_1x + c_2x^2 + \ldots + c_{2n-1}x^{2n-1}$$
(we want to compute the c_i's)
Let $d_j = C(\omega_{j,2n})$
$$D(x) = d_0 + d_1x + d_2x^2 + \ldots + d_{2n-1}x^{2n-1}$$
Evaluate $D(x)$ at the $2n$th roots of unity
$$D(\omega_{j,2n}) = \text{[see text for details]} = 2nc_{2n-j}$$
Polynomial Interpolation

- Build polynomial from the values of C at the $2n^{th}$ roots of unity
- Evaluate this polynomial at the $2n^{th}$ roots of unity

Dynamic Programming

- Weighted Interval Scheduling
- Given a collection of intervals I_1, \ldots, I_n with weights w_1, \ldots, w_n, choose a maximum weight set of non-overlapping intervals

Recursive Algorithm

Intervals sorted by finish time
$p[i]$ is the index of the last interval which finishes before i starts

```
1          2
3          4
5          6
7          8
```

Optimality Condition

- $Opt[j]$ is the maximum weight independent set of intervals I_1, I_2, \ldots, I_j

Algorithm

```
MaxValue(j) =
if j = 0 return 0
else
  return max( MaxValue(j-1),
              w_j + MaxValue(p[j]))
```

Run time

- What is the worst case run time of MaxValue
- Design a worst case input
A better algorithm

M[j] initialized to -1 before the first recursive call for all j

MaxValue(j) =
 if j = 0 return 0;
 else if M[j] != -1 return M[j];
 else
 M[j] = max(MaxValue(j-1), w_j + MaxValue(p[j]));
 return M[j];