Divide and Conquer

- Recurrences, Sections 5.1 and 5.2
- Algorithms
 - Counting Inversions (5.3)
 - Closest Pair (5.4)
 - Multiplication (5.5)
 - FFT (5.6)

Divide and Conquer

Array Mergesort(Array a){
 n = a.Length;
 if (n <= 1)
 return a;
 b = Mergesort(a[0 .. n/2]);
 c = Mergesort(a[n/2+1 .. n-1]);
 return Merge(b, c);
}

Algorithm Analysis

- Cost of Merge
- Cost of Mergesort

Recurrence Analysis

- Solution methods
 - Unrolling recurrence
 - Guess and verify
 - Plugging in to a "Master Theorem"

T(n) <= 2T(n/2) + cn; T(2) <= c;
Unrolling the recurrence

Substitution
Prove $T(n) \leq cn \log_2 n$ for $n \geq 2$
Induction:
Base Case:
Induction Hypothesis:

A better mergesort (?)
- Divide into 3 subarrays and recursively sort
- Apply 3-way merge

Unroll recurrence for $T(n) = 3T(n/3) + dn$

$T(n) = aT(n/b) + f(n)$

$T(n) = T(n/2) + cn$
Where does this recurrence arise?
Solving the recurrence exactly

\[T(n) = 4T(n/2) + cn \]

\[T(n) = 2T(n/2) + n^2 \]

\[T(n) = 2T(n/2) + n^{1/2} \]

Recurrences

- Three basic behaviors
 - Dominated by initial case
 - Dominated by base case
 - All cases equal – we care about the depth