Optimal Caching

- **Caching problem:**
 - Maintain collection of items in local memory
 - Minimize number of items fetched

Caching example

| A, B, C, D, A, E, B, A, D, A, C, B, D, A |

Farthest in the future algorithm

- Discard element used farthest in the future

| A, B, C, A, C, D, C, B, C, A, D |
Correctness Proof

- Sketch
- Start with Optimal Solution \(O \)
- Convert to Farthest in the Future Solution \(F-F \)
- Look at the first place where they differ
- Convert \(O \) to evict \(F-F \) element
 - There are some technicalities here to ensure the caches have the same configuration . . .

Single Source Shortest Path Problem

- Given a graph and a start vertex \(s \)
 - Determine distance of every vertex from \(s \)
 - Identify shortest paths to each vertex
 - Express concisely as a “shortest paths tree”
 - Each vertex has a pointer to a predecessor on shortest path

Construct Shortest Path Tree from \(s \)

Warmup

- If \(P \) is a shortest path from \(s \) to \(v \), and if \(t \) is on the path \(P \), the segment from \(s \) to \(t \) is a shortest path between \(s \) and \(t \)
 - WHY?

Assume all edges have non-negative cost

Dijkstra’s Algorithm

\[
S = \{\}; \quad d[s] = 0; \quad d[v] = \infty \text{ for } v \neq s
\]

While \(S \neq V \)

Choose \(v \) in \(V-S \) with minimum \(d[v] \)

Add \(v \) to \(S \)

For each \(w \) in the neighborhood of \(v \)

\[
d[w] = \min(d[w], d[v] + c(v, w))
\]

Simulate Dijkstra’s algorithm (starting from \(s \) on the graph)
Dijkstra’s Algorithm as a greedy algorithm
- Elements committed to the solution by order of minimum distance

Correctness Proof
- Elements in S have the correct label
- Key to proof: when v is added to S, it has the correct distance label.

Proof
- Let P_v be the path of length $d[v]$, with an edge (u,v)
- Let P be some other path to v. Suppose P first leaves S on the edge (x,y)
 - $P = P_{sx} + c(x,y) + P_{vy}$
 - $\text{Len}(P_{sx}) + c(x,y) \geq d[y]$
 - $\text{Len}(P_{vy}) \geq 0$
 - $\text{Len}(P) \geq d[y] + 0 \geq d[v]$

Negative Cost Edges
- Draw a small example a negative cost edge and show that Dijkstra’s algorithm fails on this example

Bottleneck Shortest Path
- Define the bottleneck distance for a path to be the maximum cost edge along the path

Compute the bottleneck shortest paths
How do you adapt Dijkstra’s algorithm to handle bottleneck distances
• Does the correctness proof still apply?