Greedy Algorithms

- Solve problems with the simplest possible algorithm
- The hard part: showing that something simple actually works
- Pseudo-definition
 - An algorithm is Greedy if it builds its solution by adding elements one at a time using a simple rule

CSE 421
Algorithms
Richard Anderson
Lecture 7
Greedy Algorithms

Scheduling Theory

- Tasks
 - Processing requirements, release times, deadlines
- Processors
- Precedence constraints
- Objective function
 - Jobs scheduled, lateness, total execution time

Interval Scheduling

- Tasks occur at fixed times
- Single processor
- Maximize number of tasks completed
- Tasks \{1, 2, \ldots N\}
- Start and finish times, s(i), f(i)

What is the largest solution?

Greedy Algorithm for Scheduling

Let T be the set of tasks, construct a set of independent tasks I, A is the rule determining the greedy algorithm

$I = \{\}$
While (T is not empty)

Select a task t from T by a rule A
Add t to I
Remove t and all tasks incompatible with t from T
Simulate the greedy algorithm for each of these heuristics:

Schedule earliest starting task

Schedule shortest available task

Schedule task with fewest conflicting tasks

Greedy solution based on earliest finishing time

Example 1

Example 2

Example 3

Theorem: Earliest Finish Algorithm is Optimal
- Key idea: Earliest Finish Algorithm stays ahead
- Let \(A = \{i_1, \ldots, i_k\} \) be the set of tasks found by EFA in increasing order of finish times
- Let \(B = \{j_1, \ldots, j_m\} \) be the set of tasks found by a different algorithm in increasing order of finish times
- Show that for \(r \leq \min(k, m) \), \(f(i_r) \leq f(j_r) \)

Stay ahead lemma
- \(A \) always stays ahead of \(B \), \(f(i) \leq f(j) \)
- Induction argument
 - \(f(i_1) \leq f(j_1) \)
 - If \(f(i_{r-1}) \leq f(j_{r-1}) \) then \(f(i_r) \leq f(j_r) \)

Completing the proof
- Let \(A = \{i_1, \ldots, i_k\} \) be the set of tasks found by EFA in increasing order of finish times
- Let \(O = \{j_1, \ldots, j_m\} \) be the set of tasks found by an optimal algorithm in increasing order of finish times
- If \(k < m \), then the Earliest Finish Algorithm stopped before it ran out of tasks

Scheduling all intervals
- Minimize number of processors to schedule all intervals
How many processors are needed for this example?

Prove that you cannot schedule this set of intervals with two processors

Depth: maximum number of intervals active

Algorithm

- Sort by start times
- Suppose maximum depth is d, create d slots
- Schedule items in increasing order, assign each item to an open slot
- Correctness proof: When we reach an item, we always have an open slot

Scheduling tasks

- Each task has a length t_i and a deadline d_i
- All tasks are available at the start
- One task may be worked on at a time
- All tasks must be completed
- Goal minimize maximum lateness
 - Lateness = $t_i - d_i$ if $t_i >= d_i$

Example

<table>
<thead>
<tr>
<th>Time</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Lateness 1

<table>
<thead>
<tr>
<th>Time</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Lateness 3

<table>
<thead>
<tr>
<th>Time</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Lateness 3
Determine the minimum lateness

<table>
<thead>
<tr>
<th>Time</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
</tr>
</tbody>
</table>

To be continued . . .