Bipartite

- A graph is bipartite if its vertices can be partitioned into two sets V_1 and V_2 such that all edges go between V_1 and V_2
- A graph is bipartite if it can be two colored

Theorem: A graph is bipartite if and only if it has no odd cycles

Lemma 1

- If a graph contains an odd cycle, it is not bipartite

Lemma 2

- If a BFS tree has an \textit{intra-level edge}, then the graph has an odd length cycle

Lemma 3

- If a graph has no odd length cycles, then it is bipartite
Connected Components

- Undirected Graphs

Computing Connected Components in $O(n+m)$ time

- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

Directed Graphs

- A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.

Identify the Strongly Connected Components

Strongly connected components can be found in $O(n+m)$ time

- But it's tricky!
- Simpler problem: given a vertex v, compute the vertices in v's scc in $O(n+m)$ time

Topological Sort

- Given a set of tasks with precedence constraints, find a linear order of the tasks
Find a topological order for the following graph

If a graph has a cycle, there is no topological sort

Lemma: If a graph is acyclic, it has a vertex with in degree 0
Proof:
- Pick a vertex v_1, if it has in-degree 0 then done
- If not, let (v_2, v_1) be an edge, if v_2 has in-degree 0 then done
- If not, let (v_3, v_2) be an edge . . .
- If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

Topological Sort Algorithm
While there exists a vertex v with in-degree 0
 Output vertex v
 Delete the vertex v and all out going edges

Details for $O(n+m)$ implementation
- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at $O(1)$ cost each