CSE 421
Algorithms
Richard Anderson
Lecture 4

Announcements
• Homework 2, Due October 11, 1:30 pm.
• Reading
 – Chapter 2.1, 2.2
 – Chapter 3 (Mostly review)
 – Start on Chapter 4

Today
• Finish discussion of asymptotics
 – O, Ω, Θ
• Graph theory terminology
• Basic graph algorithms

Formalizing growth rates
• $T(n) = O(f(n)) \quad [T : \mathbb{Z}^+ \rightarrow \mathbb{R}^+]$
 – If sufficiently large n, $T(n)$ is bounded by a constant multiple of $f(n)$
 – Exist c, n_0, such that for $n > n_0$, $T(n) < c f(n)$
• $T(n) = O(f(n))$ will be written as:
 $T(n) = O(f(n))$
 – Be careful with this notation

Order the following functions in increasing order by their growth rate
a) $n \log^4 n$
b) $2n^2 + 10n$
c) $2^{n^{100}}$
d) $100n + \log^8 n$
e) n^{100}
f) 3^n
g) $1000 \log^{10} n$
h) $n^{1/2}$

Ordering growth rates
• For $b > 0$ and $x > 0$
 – $\log^n n$ is $O(n^x)$
• For $r > 1$ and $d > 0$
 – n^d is $O(r^n)$
Lower bounds

- \(T(n) = \Omega(f(n)) \)
 - \(T(n) \) is at least a constant multiple of \(f(n) \)
 - There exists an \(n_0 \) and \(\varepsilon > 0 \) such that \(T(n) > \varepsilon f(n) \) for all \(n > n_0 \)
- Warning: definitions of \(\Omega \) vary

- \(T(n) = \Theta(f(n)) \) if \(T(n) = O(f(n)) \) and \(T(n) = \Omega(f(n)) \)

True or False

- \(n \log n \) is \(O(n^2) \)
- \(n^3 \) is \(O(4n^3 + 2n + n) \)
- \(n^{-1} \) is \(O(n^2) \)
- \(n^{-1} \) is \(\Omega(n^{-2}) \)
- \(f(n) = n^2 \) if \(n \) is even, \(0 \) if \(n \) is odd
 - \(f(n) \) is \(\Omega(n^2) \)

Useful Theorems

- If \(\lim (f(n) / g(n)) = c \) for \(c > 0 \) then \(f(n) = \Theta(g(n)) \)

- If \(f(n) \) is \(O(g(n)) \) and \(g(n) \) is \(O(h(n)) \) then \(f(n) \) is \(O(h(n)) \)

- If \(f(n) \) is \(O(h(n)) \) and \(g(n) \) is \(O(h(n)) \) then \(f(n) + g(n) \) is \(O(h(n)) \)

Graph Theory

- \(G = (V, E) \)
 - \(V \) – vertices
 - \(E \) – edges
- Undirected graphs
 - Edges sets of two vertices \(\{u, v\} \)
- Directed graphs
 - Edges ordered pairs \((u, v) \)
- Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops

Definitions

- Path: \(v_1, v_2, \ldots, v_k \) with \((v_i, v_{i+1}) \) in \(E \)
 - Simple Path
 - Cycle
 - Simple Cycle
- Distance
- Connectivity
 - Undirected
 - Directed (strong connectivity)
- Trees
 - Rooted
 - Unrooted

Graph search

- Find a path from \(s \) to \(t \)

\[S = \{s\} \]

While there exists \(u, v \) in \(E \) with \(u \) in \(S \) and \(v \) not in \(S \)

\[\text{Pred}(v) = u \]

Add \(v \) to \(S \)

If \(v = t \) then path found
Breadth first search

• Explore vertices in layers
 – s in layer 1
 – Neighbors of s in layer 2
 – Neighbors of layer 2 in layer 3 . . .

Key observation

• All edges go between vertices on the same layer or adjacent layers

Bipartite

• A graph V is bipartite if V can be partitioned into V₁, V₂ such that all edges go between V₁ and V₂
• A graph is bipartite if it can be two colored

Testing Bipartiteness

• If a graph contains an odd cycle, it is not bipartite

Algorithm

• Run BFS
• Color odd layers red, even layers blue
• If no edges between the same layer, the graph is bipartite
• If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite