CSE 421: Introduction to Algorithms

Complexity and Representative Problems

Winter 2005
Paul Beame

Measuring efficiency: The RAM model

- RAM = Random Access Machine
- Time = # of instructions executed in an ideal assembly language
 - each simple operation (+,*,=,if,call) takes one time step
 - each memory access takes one time step

Complexity analysis

- Problem size N
 - Worst-case complexity: max # steps algorithm takes on any input of size N
 - Best-case complexity: min # steps algorithm takes on any input of size N
 - Average-case complexity: avg # steps algorithm takes on inputs of size N

Stable Matching

- Problem size
 - N=2N2 words
 - 2n people each with a preference list of length n
 - $2n\log n$ bits
 - specifying an ordering for each preference list takes $n\log n$ bits
 - Brute force algorithm
 - Try all $n!$ possible matchings
 - Gale-Shapley Algorithm
 - n^3 iterations, each costing constant time
 - For each man an array listing the women in preference order
 - For each woman an array listing the preferences indexed by the names of the men

Complexity

- The complexity of an algorithm associates a number $T(N)$, the best/worst/average-case time the algorithm takes, with each problem size N.

- Mathematically,
 - T is a function that maps positive integers giving problem size to positive real numbers giving number of steps.

Efficient = Polynomial Time

- Polynomial time
 - Running time $T(N) \leq cN^k+d$ for some $c,d,k>0$
- Why polynomial time?
 - If problem size grows by at most a constant factor then so does the running time
 - E.g. $T(2N) \leq c(2N)^k+d \leq 2^k(cN^k+d)$
 - Polynomial-time is exactly the set of running times that have this property
 - Typical running times are small degree polynomials, mostly less than N^3, at worst N^6, not N^{100}
Complexity

O-notation etc

5 Representative Problems

Interval Scheduling

Interval scheduling

Interval Scheduling

5

9

10

11

12

Given two positive functions \(f \) and \(g \):
- \(f(N) \) is \(O(g(N)) \) iff there is a constant \(c > 0 \) so that \(f(N) \) is eventually always \(\leq c \cdot g(N) \)
- \(f(N) \) is \(o(g(N)) \) iff the ratio \(f(N)/g(N) \) goes to 0 as \(N \) gets large
- \(f(N) \) is \(\Omega(g(N)) \) iff there is a constant \(c > 0 \) so that \(f(N) \geq c \cdot g(N) \) for infinitely many values of \(N \)
- \(f(N) \) is \(\Theta(g(N)) \) iff \(f(N) \) is \(O(g(N)) \) and \(f(N) \) is \(\Omega(g(N)) \)

Note: The definition of \(\Omega \) is the same as “\(f(N) \) is not \(o(g(N)) \)”

In Interval Scheduling:
- Single resource
- Reservation requests
- Of form “Can I reserve it from start time \(s \) to finish time \(f \)?”
- \(s < f \)
- Find: maximum number of requests that can be scheduled so that no two reservations have the resource at the same time

Formally:
- Requests 1, 2, ..., \(n \)
 - request \(i \) has start time \(s_i \) and finish time \(f_i \)
 - \(s_i < f_i \)
- Requests \(i \) and \(j \) are compatible if either:
 - request \(i \) is for a time entirely before request \(j \)
 - \(f_i \leq s_j \)
 - request \(j \) is for a time entirely before request \(i \)
 - \(f_j \leq s_i \)
- Set \(A \) of requests is compatible if every pair of requests \(i, j \in A \), \(i \neq j \) is compatible
- Goal: Find maximum size subset \(A \) of compatible requests
Weighted Interval Scheduling
- Same problem as interval scheduling except that each request i also has an associated value or weight w_i
 - w_i might be
 - amount of money we get from renting out the resource for that time period
 - amount of time the resource is being used
- Goal: Find compatible subset A of requests with maximum total weight

Bipartite Matching
- A graph $G=(V,E)$ is bipartite iff
 - V consists of two disjoint pieces X and Y such that every edge e in E is of the form (x,y) where $x \in X$ and $y \in Y$
 - Similar to stable matching situation but in that case all possible edges were present
 - $M \subseteq E$ is a matching in G iff no two edges in M share a vertex
 - Goal: Find a matching M in G of maximum possible size

Independent Set
- Given a graph $G=(V,E)$
 - A set $I \subseteq V$ is independent iff no two nodes in I are joined by an edge
 - Goal: Find an independent subset I in G of maximum possible size
- Models conflicts and mutual exclusion

Weighted Interval Scheduling
- Ordinary interval scheduling is a special case of this problem
 - Take all $w_i = 1$
- Problem is quite different though
 - E.g. one weight might dwarf all others
 - “Greedy algorithms” don’t work
- Solution: “Dynamic Programming”
 - builds up optimal solutions from smaller problems using a compact table to store them

Bipartite Matching
- Models assignment problems
 - X represents jobs, Y represents machines
 - X represents professors, Y represents courses
 - If $|X|=|Y|=n$
 - G has perfect matching iff maximum matching has size n
- Solution: polynomial-time algorithm using “augmentation” technique
 - also used for solving more general class of network flow problems

Independent Set
- Generalizes
 - Interval Scheduling
 - Vertices in the graph are the requests
 - Vertices are joined by an edge if they are not compatible
 - Bipartite Matching
 - Given bipartite graph $G=(V,E)$ create new graph $G'=(V',E')$ where
 - $V'=E$
 - Two elements of V' (which are edges in G) are joined if they share an endpoint in G
Bipartite Matching vs Independent Set

\[G = (U \cup V, E) \]

\[G' = (V', E') \]

Independent Set

- No polynomial-time algorithm is known
- But to convince someone that there was a large independent set all you’d need to do is show it to them
- They can easily convince themselves that the set is large enough and independent
- Convincing someone that there isn’t one seems much harder
- We will show that Independent Set is NP-complete
 - Class of all the hardest problems that have the property above

Competitive Facility Location

- Two players competing for market share in a geographic area
 - e.g. McDonald’s, Burger King
- Rules:
 - Region is divided into \(n \) zones, 1,...,\(n \)
 - Each zone \(i \) has a value \(b_i \)
 - Revenue derived from opening franchise in that zone
 - No adjacent zones may contain a franchise i.e., zoning regulations limit density
 - Players alternate opening franchises
- Find: Given a target total value \(B \) is there a strategy for the second player that always achieves \(\geq B \)?

Competitive Facility Location

- Model geography by
 - A graph \(G=(V,E) \) where
 - \(V \) is the set \{1,...,\(n \}\) of zones
 - \(E \) is the set of pairs \((i,j)\) such that \(i \) and \(j \) are adjacent zones
- Observe:
 - The set of zones with franchises will form an independent set in \(G \)

Competitive Facility Location

- Checking that a strategy is good seems hard
 - You’d have to worry about all possible responses at each round!
 - a giant search tree of possibilities
- Problem is PSPACE-complete
 - Likely strictly harder than NP-complete problems
 - PSPACE-complete problems include
 - Game-playing problems such as \(n \times n \) chess and checkers
 - Logic problems such as whether quantified boolean expressions are always true
 - Verification problems for finite automata