Dynamic Programming

- Dynamic Programming
 - Give a solution of a problem using smaller sub-problems where all the possible sub-problems are determined in advance
 - Useful when the same sub-problems show up again and again in the solution

A simple case: Computing Fibonacci Numbers

- Recall $F_n = F_{n-1} + F_{n-2}$ and $F_0 = 0, F_1 = 1$
- Recursive algorithm:
 - $Fib(n)$
 - if $n = 0$ then return(0)
 - else if $n = 1$ then return(1)
 - else return($Fib(n-1) + Fib(n-2)$)

Call tree - start

Full call tree

Memoization (Caching)

- Remember all values from previous recursive calls
- Before recursive call, test to see if value has already been computed
- Dynamic Programming
 - Convert memoized algorithm from a recursive one to an iterative one
Fibonacci
Dynamic Programming Version

FibDP(n):
F[0] ← 0
F[1] ← 1
for i=2 to n do
 F[i] ← F[i-1] + F[i-2]
endfor
return(F[n])

Fibonacci: Space-Saving Dynamic Programming

FibDP(n):
prev ← 0
curr ← 1
for i=2 to n do
 temp ← curr
 curr ← curr + prev
 prev ← temp
endfor
return(curr)

Dynamic Programming

Useful when
- same recursive sub-problems occur repeatedly
- Can anticipate the parameters of these recursive calls
- The solution to whole problem can be figured out with knowing the internal details of how the sub-problems are solved
- principle of optimality
 "Optimal solutions to the sub-problems suffice for optimal solution to the whole problem"

Three Steps to Dynamic Programming

- Formulate the answer as a recurrence relation or recursive algorithm
- Show that the number of different values of parameters in the recursive calls is "small"
 - e.g., bounded by a low-degree polynomial
 - Can use memoization
- Specify an order of evaluation for the recurrence so that you already have the partial results ready when you need them.

Weighted Interval Scheduling

Same problem as interval scheduling except that each request i also has an associated value or weight w_i
- w_i might be
 - amount of money we get from renting out the resource for that time period
 - amount of time the resource is being used w_i = f_i - s_i
- Goal: Find compatible subset S of requests with maximum total weight

Greedy Algorithms for Weighted Interval Scheduling?

No criterion seems to work
- Earliest start time s_i
 - Doesn't work
- Shortest request time f_i - s_i
 - Doesn't work
- Fewest conflicts
 - Doesn't work
- Earliest finish time f_i
 - Doesn't work
- Largest weight w_i
 - Doesn't work
Towards Dynamic Programming:
Step 1 – A Recursive Algorithm

- Suppose that like ordinary interval scheduling we have first sorted the requests by finish time \(f_i \), so \(f_{i_1} \leq f_{i_2} \leq \ldots \leq f_n \).
- Say request \(i \) comes before request \(j \) if \(i < j \).
- For any request \(j \) let \(p(j) \) be
 - the largest-numbered request before \(j \) that is compatible with \(j \).
 - or 0 if no such request exists.
- Therefore \([1, \ldots, p(j)]\) is precisely the set of requests before \(j \) that are compatible with \(j \).

Two cases depending on whether an optimal solution \(O \) includes request \(n \):

- If it does not include request \(n \) then all requests in \(O \) must be contained in \([1, \ldots, n-1]\).
 - Not only that!
 - The optimal solution \(O \) must contain an optimal solution for \([1, \ldots, n-1]\).
 - “Principle of Optimality”

Towards Dynamic Programming:
Step 1 – A Recursive Algorithm

- All subproblems involve requests \([1, \ldots, i]\) for some \(i \).
- For \(i = 1, \ldots, n \) let \(\text{OPT}(i) \) be the weight of the optimal solution to the problem \([1, \ldots, i]\).
- The two cases give
 \[
 \text{OPT}(n) = \max(w_n + \text{OPT}(p(n)), \text{OPT}(n-1))
 \]
 - Also
 - \(n \in O \) iff \(w_n + \text{OPT}(p(n)) > \text{OPT}(n-1) \).

Towards Dynamic Programming:
Step 1 – A Recursive Algorithm

Sort requests and compute array \(p[i] \) for each \(i = 1, \ldots, n \):

\[
\text{ComputeOpt}(n) =
\begin{cases}
 0 & \text{if } n = 0 \\
 \text{ComputeOpt}(p[n]) & \text{else if } w_n + \text{ComputeOpt}(n-1) \geq w_n + u \text{ and } w_n + v
\end{cases}
\]

Towards Dynamic Programming:
Step 2 – Small # of parameters

- \(\text{ComputeOpt}(n) \) can take exponential time in the worst case.
 - \(2^n \) calls if \(p(i) = i-1 \) for every \(i \).
- There are only \(n \) possible parameters to \(\text{ComputeOpt} \).
- Store these answers in an array \(\text{OPT}[n] \) and only recompute when necessary.
 - Memoization.
- Initialize \(\text{OPT}[i] = 0 \) for \(i = 1, \ldots, n \).
Dynamic Programming:
Step 2 – Memoization

ComputeOpt(n)
if n=0 then return(0)
else
 u ← MComputeOpt(p[n])
 v ← MComputeOpt(n-1)
 if w_n + u > v then
 return(w_n + u)
 else
 return(v)
end if

MComputeOpt(n)
if OPT[n]=0 then
 v ← ComputeOpt(n)
 OPT[n] ← v
else
 return(OPT[n])
end if

Dynamic Programming Step 3:
Iterative Solution

The recursive calls for parameter n have parameter values i that are < n

IterativeComputeOpt(n)
array OPT[0..n]
OPT[0] ← 0
for i=1 to n
 if w_i + OPT[p[i]] > OPT[i-1] then
 OPT[i] ← w_i + OPT[p[i]]
 else
 OPT[i] ← OPT[i-1]
 end if
end for

Producing the Solution

produces the solution

produces the solution

Example

Example

Segmented Least Squares

Given a set \(P \) of \(n \) points in the plane
\[p_1 = (x_1, y_1), \ldots, p_n = (x_n, y_n) \] with \(x_1 < \ldots < x_n \),
determine a line \(L \) given by \(y = ax + b \) that
optimizes the totaled ‘squared error’
\[\text{Error}(L, P) = \sum (y_i - ax_i - b)^2 \]
A classic problem in statistics
Optimal solution is known (see text)
Call this line \(P \) and its error \(\text{error}(P) \)

What if data seems to follow a piece-wise linear model?
Segmented Least Squares

What if data seems to follow a piece-wise linear model?
- Number of pieces to choose is not obvious
- If we chose n-1 pieces we could fit with 0 error
 - Not fair
- Add a penalty of C times the number of pieces to the error to get a total penalty
- How do we compute a solution with the smallest possible total penalty?

Recursive idea
- If we knew the point \(p_i \) where the last line segment began then we could solve the problem optimally for points \(p_1, \ldots, p_i \) and combine that with the last segment to get a global optimal solution
 - Let \(\text{OPT}(i) \) be the optimal penalty for points \(p_1, \ldots, p_i \)
 - Total penalty for this solution would be
 \[\text{Error}((p_i, \ldots, p_n)) + C + \text{OPT}(i-1) \]

Segmented Least Squares

Dynamic Programming Solution

Knapsack (Subset-Sum) Problem

- Given:
 - integer \(W \) (knapsack size)
 - \(n \) object sizes \(x_1, x_2, \ldots, x_n \)
- Find:
 - Subset \(S \) of \(\{1, \ldots, n\} \) such that \(\sum_{i \in S} x_i \leq W \) but \(\sum_{i \in S} x_i \) is as large as possible
Recursive Algorithm

- Let $K(n,W)$ denote the problem to solve for W and x_1, x_2, \ldots, x_n
- For $n>0$,
 - The optimal solution for $K(n,W)$ is the better of the optimal solution for either $K(n-1,W)$ or $x_n + K(n-1,W-x_n)$
 - For $n=0$
 - $K(0,W)$ has a trivial solution of an empty set S with weight 0

Recursive calls

- Recursive calls on list ..., 3, 4, 7

Common Sub-problems

- Only sub-problems are $K(i,w)$ for
 - $i = 0,1,\ldots, n$
 - $w = 0,1,\ldots, W$
- Dynamic programming solution
 - Table entry for each $K(i,w)$
 - OPT - value of optimal soln for first i objects and weight w
 - belong flag - is x_i a part of this solution?
 - Initialize $OPT[0,w]$ for $w=0,\ldots, W$
 - Compute all $OPT[i,*]$ from $OPT[i-1, *]$ for $i>0$

Dynamic Knapsack Algorithm

```plaintext
for w=0 to W: OPT[0,w] ← 0; end for
for i=1 to n do
  for w=0 to W do
    OPT[i,w]←OPT[i-1,w]
    belong[i,w]←0
    if $w \geq x_i$ then
      val ← $x_i + OPT[i-1,w-x_i]$
      if val≥OPT[i,w] then
        OPT[i,w]←val
        belong[i,w]←1
      end if
    end if
  end for
end for
return(OPT[n,W])
```

Time $O(nW)$

Sample execution on 2, 3, 4, 7 with $K=15$

Saving Space

- To compute the value OPT of the solution only need to keep the last two rows of OPT at each step
- What about determining the set S?
 - Follow the belong flags $O(n)$ time
 - What about space?
Three Steps to Dynamic Programming

- Formulate the answer as a recurrence relation or recursive algorithm
- Show that the number of different values of parameters in the recursive algorithm is “small” e.g., bounded by a low-degree polynomial
- Specify an order of evaluation for the recurrence so that you already have the partial results ready when you need them.

Sequence Alignment: Edit Distance

- Given:
 - Two strings of characters A=a_1 a_2 ... a_n and B=b_1 b_2 ... b_m
- Find:
 - The minimum number of edit steps needed to transform A into B where an edit can be:
 - insert a single character
 - delete a single character
 - substitute one character by another

Sequence Alignment vs Edit Distance

- Sequence Alignment
 - Insert corresponds to aligning with a “−” in the first string
 - Cost δ (in our case 1)
 - Delete corresponds to aligning with a “−” in the second string
 - Cost δ (in our case 1)
 - Replacement of an a by a b corresponds to a mismatch
 - Cost α_{ab} (in our case 1 if a≠b and 0 if a=b)
- In Computational Biology this alignment algorithm is attributed to Smith & Waterman

Applications

- “diff” utility – where do two files differ
- Version control & patch distribution – save/send only changes
- Molecular biology
 - Similar sequences often have similar origin and function
 - Similarity often recognizable despite millions or billions of years of evolutionary divergence

Recursive Solution

- Sub-problems: Edit distance problems for all prefixes of A and B that don’t include all of both A and B
 - Let D(i,j) be the number of edits required to transform a_1 a_2 ... a_i into b_1 b_2 ... b_j
 - Clearly D(0,0)=0
Computing $D(n,m)$

Imagine how best sequence handles the last characters a_n and b_m

If best sequence of operations
- deletes a_n then $D(n,m) = D(n-1,m)+1$
- inserts b_m then $D(n,m) = D(n,m-1)+1$
- replaces a_n by b_m then $D(n,m) = D(n-1,m-1)+1$
- matches a_n and b_m then $D(n,m) = D(n-1,m-1)$

Recursive algorithm $D(n,m)$

```java
if n=0 then
    return(m)
else if m=0 then
    return(n)
else
    if $a_n=b_m$ then
        replace-cost ← 0
    else
        replace-cost ← 1
    end if
    return(min($D(n-1,m)+1$, $D(n,m-1)+1$, $D(n-1,m-1)+replace-cost$))
```

dynamic programming

Example run with AGACATTG and GAGTTA

```
  A  G  A  C  A  T  T  G
  0  1  2  3  4  5  6  7  8
  G  1  A  2
  3  G  3
  4  T  4
  5  T
  6  A
```

Example run with AGACATTG and GAGTTA

```
  A  G  A  C  A  T  T  G
  0  1  2  3  4  5  6  7  8
  G  1  1  1  2  3  4  5  6  7
  2  1  2  1
  3
  4
  5
  6
```
Example run with AGACATTG and GAGTTA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example run with AGACATTG and GAGTTA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Reading off the operations

- Follow the sequence and use each color of arrow to tell you what operation was performed.
- From the operations can derive an optimal alignment

```
AGACATTG
_ _GAG_TTA
```

Saving Space

To compute the distance values we only need the last two rows (or columns)

- \(O(\min(m,n)) \) space

To compute the alignment/sequence of operations

- seem to need to store all \(O(mn) \) pointers/arrow colors
- Nifty divide and conquer variant that allows one to do this in \(O(\min(m,n)) \) space and retain \(O(mn) \) time
 - In practice the algorithm is usually run on smaller chunks of a large string, e.g. \(m \) and \(n \) are lengths of genes so a few thousand characters
 - Researchers want all alignments that are close to optimal
 - Basic algorithm is run since the whole table of pointers (2 bits each) will fit in RAM
 - Ideas are neat, though

To save space:

- Compute the distance values for only the last two rows
- Compute the alignment/sequence of operations (seem to need to store all \(O(mn) \) pointers/arrow colors)
- Nifty divide and conquer variant that allows one to do this in \(O(\min(m,n)) \) space and retain \(O(mn) \) time
 - In practice the algorithm is usually run on smaller chunks of a large string, e.g. \(m \) and \(n \) are lengths of genes so a few thousand characters
 - Researchers want all alignments that are close to optimal
 - Basic algorithm is run since the whole table of pointers (2 bits each) will fit in RAM
 - Ideas are neat, though
Saving space
- Alignment corresponds to a path through the table from lower right to upper left.
- Must pass through the middle column.
- Recursively compute the entries for the middle column from the left.
- If we knew the cost of completing each then we could figure out where the path crossed.
- Problem: There are \(n \) possible strings to start from.
- Solution: Recursively calculate the right half cost for each entry in this column using alignments starting at the other ends of the two input strings!
- Can reuse the storage on the left when solving the right hand problem.

Shortest paths with negative cost edges (Bellman-Ford)
- We want to grow paths from \(s \) to \(t \) based on the \# of edges in the path.
- Let \(\text{Cost}(s,t,i) \) = cost of minimum-length path from \(s \) to \(t \) using up to \(i \) hops.
 - \(\text{Cost}(v,t,0) = 0 \) if \(v = t \)
 - otherwise
 - \(\text{Cost}(v,t,i) = \min(\text{Cost}(v,t,i-1), \min_{v,w \in E} (c_{vw} + \text{Cost}(w,t,i-1))) \)

Bellman-Ford
- ShortestPath(G, s, t)
 - for all \(v \in V \)
 - \(\text{OPT}[v] \leftarrow \infty \)
 - \(\text{OPT}[t] \leftarrow 0 \)
 - for \(i = 1 \) to \(n-1 \) do
 - for all \(v \in V \) do
 - \(\text{OPT}[v] \leftarrow \min_{v,w \in E} (c_{vw} + \text{OPT}[w]) \)
 - for all \(v \in V \) do
 - \(\text{OPT}[v] \leftarrow \min(\text{OPT}[v], \text{OPT}[v]) \)
 - return \(\text{OPT}[s] \)

Negative cycles
- Claim: There is a negative-cost cycle that can reach \(t \) if for some vertex \(v \in V \), \(\text{Cost}(v,t,n) < \text{Cost}(v,t,n-1) \).
- Proof:
 - We already know that if there aren’t any then we only need paths of length up to \(n \).
 - For the other direction:
 - The recurrence computes \(\text{Cost}(v,t,i) \) correctly for any number of hops \(i \).
 - The recurrence reaches a fixed point if for every \(v \in V \), \(\text{Cost}(v,t,i) = \text{Cost}(v,t,i-1) \).
 - A negative-cost cycle means that eventually some \(\text{Cost}(v,t,i) \) gets smaller than any given bound.
 - Can’t have a \(-ve\) cost cycle if for every \(v \in V \), \(\text{Cost}(v,t,n) = \text{Cost}(v,t,n-1) \).
Last details

- Can run algorithm and stop early if the OPT and OPT' arrays are ever equal
 - Even better, one can update only neighbors v of vertices w with OPT[w]=OPT[w]
- Can store a successor pointer when we compute OPT
 - Homework assignment

- By running for step n we can find some vertex v on a negative cycle and use the successor pointers to find the cycle
Bellman-Ford with a DAG

Edges only go from lower to higher-numbered vertices
- Update distances in reverse order of topological sort
- Only one pass through vertices required
- $O(n+m)$ time