CSE 421: Introduction to Algorithms

Dealing with NP-completeness

Winter 2005
Paul Beame
What to do if the problem you want to solve is NP-hard

You might have phrased your problem too generally

- e.g., in practice, the graphs that actually arise are far from arbitrary
- maybe they have some special characteristic that allows you to solve the problem in your special case
 - for example the Independent-Set problem is easy on “interval graphs”
 - Exactly the case for interval scheduling!
- search the literature to see if special cases already solved
What to do if the problem you want to solve is NP-hard

Try to find an approximation algorithm

Maybe you can’t get the size of the best Vertex Cover but you can find one within a factor of 2 of the best

Given graph $G=(V,E)$, start with an empty cover

While there are still edges in E left

Choose an edge $e=\{u,v\}$ in E and add both u and v to the cover

Remove all edges from E that touch either u or v.

Edges chosen don’t share any vertices so optimal cover size must be at least # of edges chosen
What to do if the problem you want to solve is NP-hard

Polynomial-time approximation algorithms for NP-hard problems can sometimes be ruled out unless $P=NP$

E.g. **Coloring Problem**: Given a graph $G=(V,E)$ find the smallest k such that G has a k-coloring.

No approximation ratio better than $4/3$ is possible unless $P=NP$

Otherwise you would have to be able to figure out if a 3-colorable graph can be colored in < 4 colors. i.e. if it can be 3-colored
Travelling Sales Problem

TSP

Given a weighted graph G find of a smallest weight tour that visits all vertices in G

NP-hard

Notoriously easy to obtain close to optimal solutions
Minimum Spanning Tree Approximation
Minimum Spanning Tree Approximation: Factor of 2

Any tour contains a spanning tree

\[
\text{MST}(G) \leq \text{TOUR}_{\text{OPT}}(G) \leq 2 \text{MST}(G) \leq 2 \text{TOUR}_{\text{OPT}}(G)
\]
Why did this work?

- We found an Euler tour on a graph that used the edges of the original graph (possibly repeated).
- The weight of the tour was the total weight of the new graph.
- Suppose now
 - All edges possible
 - Weights satisfy triangle inequality
 - $c(u,w) \leq c(u,v) + c(v,w)$
Minimum Spanning Tree Approximation: Triangle Inequality

Can shortcut edges
• Go to next new vertex on the Euler tour
Minimum Spanning Tree Approximation: Factor of 2

TOUR_{OPT}(G) \leq 2 \text{ MST}(G) \leq 2 \text{ TOUR}_{OPT}(G)

Shortcut edges
Christofides Algorithm: A factor 3/2 approximation

Any Eulerian subgraph of the weighted complete graph will do
- Eulerian graphs require that all vertices have even degree so

Christofides Algorithm
- Compute an MST \(T \)
- Find the set \(O \) of odd-degree vertices in \(T \)
- Add a minimum-weight perfect matching \(M \) on the vertices in \(O \) to \(T \) to make every vertex have even degree
 - There are an even number of odd-degree vertices!
- Use an Euler Tour \(E \) in \(T \cup M \) and then shortcut as before

Claim: \(\text{TOUR}_{\text{OPT}} \leq 1.5 \text{ Cost}(E) \)
Christofides Approximation
Christofides Approximation

Any tour costs at least the cost of two matchings on O

Claim: $2 \text{Cost}(M) \leq \text{TOUR}_{\text{OPT}}$
Knapsack Problem

For any $\epsilon > 0$ can get an algorithm that gets a solution within $(1+\epsilon)$ factor of optimal with running time $O(n^2(1/\epsilon)^2)$

“Polynomial-Time Approximation Scheme” or PTAS

Based on maintaining just the high order bits in the dynamic programming solution.
What to do if the problem you want to solve is NP-hard

More on approximation algorithms

Recent research has classified problems based on what kinds of approximations are possible if $P \neq NP$

Best: $(1+\varepsilon)$ factor for any $\varepsilon > 0$.
- Packing and some scheduling problems, TSP in plane

Some fixed constant factor > 1, e.g. 2, $3/2$, 100
- Vertex Cover, TSP in space, other scheduling problems

$\Theta(\log n)$ factor
- Set Cover, Graph Partitioning problems

Worst: $\Omega(n^{1-\varepsilon})$ factor for any $\varepsilon > 0$
- Clique, Independent-Set, Coloring
What to do if the problem you want to solve is NP-hard

Try an algorithm that is provably fast “on average”.

To even try this one needs a model of what a typical instance is.

Typically, people consider “random graphs”

- e.g. all graphs with a given # of edges are equally likely

Problems:

- real data doesn’t look like the random graphs
- distributions of real data aren’t analyzable
What to do if the problem you want to solve is NP-hard

- Try to search the space of possible hints in a more efficient way and hope it is quick enough
- e.g. **back-tracking search**
 - For Satisfiability there are 2^n possible truth assignments
 - If we set the truth values one-by-one we might be able to figure out whole parts of the space to avoid,
 - e.g. After setting $x_1 \leftarrow 1$, $x_2 \leftarrow 0$ we don’t even need to set x_3 or x_4 to know that it won’t satisfy
 $(\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land (x_4 \lor \neg x_3) \land (x_1 \lor \neg x_4)$
 - For Satisfiability this seems to run in times like $2^{n/20}$ on typical hard instances.
- Related technique: **branch-and-bound**
What to do if the problem you want to solve is NP-hard

- Use heuristic algorithms and hope they give good answers
 - No guarantees of quality
 - Many different types of heuristic algorithms

- Many different options, especially for optimization problems, such as TSP, where we want the best solution.
 - We’ll mention several on following slides
Heuristic algorithms for NP-hard problems

- **local search** for optimization problems
 - need a notion of two solutions being neighbors
 - Start at an arbitrary solution S
 - While there is a neighbor T of S that is better than S
 - $S \leftarrow T$

- Usually fast but often gets stuck in a local optimum and misses the global optimum
 - With some notions of neighbor can take a long time in the worst case
Two solutions are neighbors iff there is a pair of edges you can swap to transform one to the other.
Heuristic algorithms for NP-hard problems

randomized local search
- start local search several times from random starting points and take the best answer found from each point
- more expensive than plain local search but usually much better answers

simulated annealing
- like local search but at each step sometimes move to a worse neighbor with some probability
- probability of going to a worse neighbor is set to decrease with time as, presumably, solution is closer to optimal
- helps avoid getting stuck in a local optimum but often slow to converge (much more expensive than randomized local search)
- analogy with slow cooling to get to lowest energy state in a crystal (or in forging a metal)
Heuristic algorithms for NP-hard problems

genetic algorithms

- view each solution as a *string* (analogy with DNA)
- maintain a *population of good solutions*
- allow *random mutations* of single characters of individual solutions
- **combine two solutions** by taking part of one and part of another (analogy with crossover in sexual reproduction)
- get rid of solutions that have the worst values and make multiple copies of solutions that have the best values (analogy with natural selection -- survival of the fittest).

- little evidence that they work well and they are usually very slow
 - as much religion as science
Heuristic algorithms

- artificial neural networks
 - based on very elementary model of human neurons
 - Set up a circuit of artificial neurons
 - each artificial neuron is an analog circuit gate whose computation depends on a set of connection strengths
 - Train the circuit
 - Adjust the connection strengths of the neurons by giving many positive & negative training examples and seeing if it behaves correctly
 - The network is now ready to use

- useful for ill-defined classification problems such as optical character recognition but not typical cut & dried problems
Other fun directions

DNA computing

Each possible hint for an NP problem is represented as a string of DNA
- fill a test tube with all possible hints

View verification algorithm as a series of tests
- e.g. checking each clause is satisfied in case of Satisfiability

For each test in turn
- use lab operations to filter out all DNA strings that fail the test (works in parallel on all strings; uses PCR)

If any string remains the answer is a YES.

Relies on fact that Avogadro’s # 6×10^{23} is large to get enough strings to fit in a test-tube.

Error-prone & so far only problem sizes less than 15!
Other fun directions

Quantum computing

- Use physical processes at the quantum level to implement weird kinds of circuit gates
 - unitary transformations
- Quantum objects can be in a superposition of many pure states at once
 - can have n objects together in a superposition of 2^n states
- Each quantum circuit gate operates on the whole superposition of states at once
 - inherent parallelism

- Need totally new kinds of algorithms to work well. Theoretically able to factor efficiently but huge practical problems: errors, decoherence.