Sample Problems

- **Independent Set**
 - Graph \(G = (V, E) \), a subset \(S \) of the vertices is independent if there are no edges between vertices in \(S \)

Definitions

- **Boolean variable**: \(x_1, \ldots, x_n \)
- **Term**: \(x_i \) or its negation \(\neg x_i \)
- **Clause**: disjunction of terms
 - \(t_1 \) or \(t_2 \) or \(\ldots \) \(t_j \)
- **Problem**:
 - Given a collection of clauses \(C_1, \ldots, C_k \), does there exist a truth assignment that makes all the clauses true
 - \((x_1 \lor \neg x_2), (\neg x_1 \lor \neg x_3), (x_2 \lor \neg x_3)\)

Satisfiability

- Given a boolean formula, does there exist a truth assignment to the variables to make the expression true

3-SAT

- Each clause has exactly 3 terms
- Variables \(x_1, \ldots, x_n \)
- Clauses \(C_1, \ldots, C_k \)
 - \(C_i = (t_{i1} \lor t_{i2} \lor t_{i3}) \)
- Fact: Every instance of SAT can be converted in polynomial time to an equivalent instance of 3-SAT

Theorem: 3-SAT \(\leq_p \) IS

- Build a graph that represents the 3-SAT instance
- Vertices \(y_i, z_i \) with edges \((y_i, z_i) \)
 - Truth setting
- Vertices \(u_{j1}, u_{j2}, \) and \(u_{j3} \) with edges \((u_{j1}, u_{j2}), (u_{j2}, u_{j3}), (u_{j3}, u_{j1}) \)
 - Truth testing
- Connections between truth setting and truth testing:
 - If \(t_j = x_i \), then put in an edge \((u_{j1}, z_i) \)
 - If \(t_j = \neg x_i \), then put in an edge \((u_{j1}, y_i) \)
Example

\[C_1 = x_1 \text{ or } x_2 \text{ or } !x_3 \]
\[C_2 = x_1 \text{ or } !x_2 \text{ or } x_3 \]
\[C_3 = !x_1 \text{ or } x_2 \text{ or } x_3 \]

Thm: 3-SAT instance is satisfiable iff there is an IS of size \(n + k \)

What is NP?

- Problems solvable in non-deterministic polynomial time . . .
- Problems where “yes” instances have polynomial time checkable certificates

Certificate examples

- Independent set of size \(K \)
 - The Independent Set
- Satisfiable formula
 - Truth assignment to the variables
- Hamiltonian Circuit Problem
 - A cycle including all of the vertices
- K-coloring a graph
 - Assignment of colors to the vertices

NP-Completeness

- A problem \(X \) is NP-complete if
 - \(X \) is in NP
 - For every \(Y \) in NP, \(Y \) \(\leq_p \) \(X \)
- \(X \) is a “hardest” problem in NP
- If \(X \) is NP-Complete, \(Z \) is in NP and \(X \) \(\leq_p \) \(Z \)
 - Then \(Z \) is NP-Complete

Cook’s Theorem

- The Circuit Satisfiability Problem is NP-Complete
Garey and Johnson

History

- Jack Edmonds
 - Identified NP
- Steve Cook
 - Cook’s Theorem – NP-Completeness
- Dick Karp
 - Identified “standard” collection of NP-Complete Problems
- Leonid Levin
 - Independent discovery of NP-Completeness in USSR

Populating the NP-Completeness Universe

- Circuit Sat \leq_p 3-SAT
- 3-SAT \leq_p Independent Set
- Independent Set \leq_p Vertex Cover
- 3-SAT \leq_p Hamiltonian Circuit
- Hamiltonian Circuit \leq_p Traveling Salesman
- 3-SAT \leq_p Integer Linear Programming
- 3-SAT \leq_p Graph Coloring
- 3-SAT \leq_p Subset Sum
- Subset Sum \leq_p Scheduling with Release times and deadlines

Hamiltonian Circuit Problem

- Hamiltonian Circuit – a simple cycle including all the vertices of the graph

Traveling Salesman Problem

- Given a complete graph with edge weights, determine the shortest tour that includes all of the vertices (visit each vertex exactly once, and get back to the starting point)

Thm: HC \leq_p TSP