Dynamic Programming

- The most important algorithmic technique covered in CSE 421
- Key ideas
 - Express solution in terms of a polynomial number of sub problems
 - Order sub problems to avoid recomputation

Today - Examples

- Examples
 - Optimal Billboard Placement
 - Text, Solved Exercise, Pg 307
 - Linebreaking with hyphenation
 - Compare with HW problem 6, Pg 317
 - String concatenation
 - Text, Solved Exercise, Page 309

Announcements

- Wednesday class will meet in CSE 305.
Billboard Placement

• Maximize income in placing billboards
 \((p_i, v_i), \ v_i: \text{value of placing billboard at position} \ p_i\)
• Constraint:
 – At most one billboard every five miles
• Example
 – \{(6,5), (7,6), (12, 5), (14, 1)\}

Opt\([k]\)

• What are the sub problems?

Opt\([k]\) = fun(Opt\([0]\),…,Opt\([k-1]\))

• How is the solution determined from sub problems?

Solution

\[
j = 0; \quad // \ j \text{ is five miles behind the current value}
\]

// the last valid location for a billboard, if one placed at \(P[k]\)

\[
\text{for } k := 1 \text{ to } n \\
\text{ while } (P[j] < P[k] \ - \ 5) \\
\quad j := j + 1; \\
\quad j := j - 1; \\
\quad \text{Opt}[k] = \text{Max}(\text{Opt}[k-1], v[k] + \text{Opt}[j]);
\]

Optimal line breaking and hyphenation

• Problem: break lines and insert hyphens to make lines as balanced as possible
• Typographical considerations:
 – Avoid excessive white space
 – Limit number of hyphens
 – Avoid widows and orphans
 – Etc.

Penalty Function

• Pen\((i, j)\) – penalty of starting a line a position \(i\), and ending at position \(j\)

Optimal line breaking and hyphenation is computed with dynamic programming.

• Key technical idea
 – Number the breaks between words/syllables
Opt[k]
• What are the sub problems?

Opt[k] = fun(Opt[0],…,Opt[k-1])
• How is the solution determined from sub problems?

Solution
for k := 1 to n
 Opt[k] := infinity;
 for j := 1 to n-1
 Opt[k] := Min(Opt[k], Opt[j] + Pen(j, k));

But what if you want to layout the text?
• And not just know the minimum penalty?

Solution
for k := 1 to n
 Opt[k] := infinity;
 for j := 1 to n-1
 temp := Opt[j] + Pen(j, k);
 if (temp < Opt[k])
 Opt[k] = temp;
 Best[k] := j;

String approximation
• Given a string S, and a library of strings B = \{b_1, …, b_n\}, construct an approximation of the string S by using copies of strings in B.

B = \{abab, bbbaaa, ccbb, ccaacc\}
S = abacccbbbaabbcbbccaaabab
Formal Model

• Strings from B assigned to non-overlapping positions of s
• Strings from B may be used multiple times
• Cost of δ for unmatched character in s
• Cost of γ for mismatched character in s
 – $\text{MisMatch}(i, j)$ – number of mismatched characters of b_j, when aligned starting with position i in s.

Opt[k]

• What are the sub problems?

Opt[k] = fun(Opt[0],…,Opt[k-1])

• How is the solution determined from sub problems?

for $i := 1$ to n
 Opt[i] = Opt[i-1] + δ;
 for $j := 1$ to $|B|$;
 $p = i - \text{len}(b_j);$
 Opt[i] = min(Opt[i], Opt[$p-1$] + γ MisMatch(p, j));

Solution