Greedy Algorithms

- Solve problems with the simplest possible algorithm
- The hard part: showing that something simple actually works
- Pseudo-definition
 - An algorithm is Greedy if it builds its solution by adding elements one at a time using a simple rule

Scheduling Theory

- Tasks
 - Processing requirements, release times, deadlines
- Processors
- Precedence constraints
- Objective function
 - Jobs scheduled, lateness, total execution time

Interval Scheduling

- Tasks occur at fixed time
- Single processor
- Maximize number of tasks completed
- Jobs scheduled, lateness, total execution time
- Tasks \{1, 2, \ldots N\}
- Start and finish times, s(i), f(i)

Simple heuristics

- Schedule earliest available task
 - Instructor note: counter examples
- Schedule shortest available task
 - Instructor note: counter examples
- Schedule task with fewest conflicts

Schedule available task with the earliest deadline

- Let A be the set of tasks computed by this algorithm, and let O be an optimal set of tasks. We want to show that |A| = |O|
 - Let A = \{i_1, \ldots, i_k\}, O = \{j_1, \ldots, j_m\}, both in increasing order of finish times
Correctness Proof

• A always stays ahead of O, f(i_r) <= f(j_r)
• Induction argument
 – f(i_1) <= f(j_1)
 – If f(i_{r-1}) <= f(j_{r-1}) then f(i_r) <= f(j_r)

Scheduling all intervals

• Minimize number of processors to schedule all intervals

Lower bound

• In any instance of the interval partitioning problem, the number of processors is at least the depth of the set of intervals

Algorithm

• Sort by start times
• Suppose maximum depth is d, create d slots
• Schedule items in increasing order, assign each item to an open slot
• Correctness proof: When we reach an item, we always have an open slot

Scheduling tasks

• Each task has a length t_i and a deadline d_i
• All tasks are available at the start
• One task may be worked on at a time
• All tasks must be completed
• Goal minimize maximum lateness
 – Lateness = f_i - d_i if f_i >= d_i

Example

<table>
<thead>
<tr>
<th>Task</th>
<th>Lateness</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
</tr>
</tbody>
</table>
Greedy Algorithm

- Earliest deadline first
- Order jobs by deadline
- This algorithm is optimal

This result may be surprising, since it ignores the job lengths.

Analysis

- Suppose the jobs are ordered by deadlines, \(d_1 \leq d_2 \leq \ldots \leq d_n \)
- A schedule has an inversion if job \(j \) is scheduled before \(i \) where \(j > i \)
- The schedule \(A \) computed by the greedy algorithm has no inversions.
- Let \(O \) be the optimal schedule, we want to show that \(A \) has the same maximum lateness as \(O \)

Proof

- Lemma: There is an optimal schedule with no idle time.
- Lemma: There is an optimal schedule with no inversions and no idle time.
- Let \(O \) be an optimal schedule with \(k \) inversions, we construct a new optimal schedule with \(k-1 \) inversions

Interchange argument

- Suppose there is a pair of jobs \(i \) and \(j \), with \(i < j \), and \(j \) scheduled immediately before \(i \). Interchanging \(i \) and \(j \) does not increase the maximum lateness. Recall, \(d_i \leq d_j \)

Summary

- Simple algorithms for scheduling problems
- Correctness proofs
 - Method 1: Identify an invariant and establish by induction that it holds
 - Method 2: Show that the algorithm's solution is as good as an optimal one by converting the optimal solution to the algorithm's solution while preserving value