Polynomial time efficiency

- An algorithm is efficient if it has a polynomial run time
- Run time as a function of problem size
 - Run time: count number of instructions executed on an underlying model of computation
 - $T(n)$: maximum run time for all problems of size at most n

Why Polynomial Time?

- Generally, polynomial time seems to capture the algorithms which are efficient in practice
- The class of polynomial time algorithms has many good, mathematical properties

Polynomial Time

- Algorithms with polynomial run time have the property that increasing the problem size by a constant factor increases the run time by at most a constant factor (depending on the algorithm)

Constant factors and growth rates

- Express run time as $O(f(n))$
 - Ignore constant factors
- Prefer algorithms with slower growth rates
- Fundamental ideas in the study of algorithms
- Basis of Tarjan/Hopcroft Turing Award
Why ignore constant factors?

- Constant factors are arbitrary
 - Depend on the implementation
 - Depend on the details of the model
- Determining the constant factors is tedious and provides little insight

Why emphasize growth rates?

- The algorithm with the lower growth rate will be faster for all but a finite number of cases
- Performance is most important for larger problem size
- As memory prices continue to fall, bigger problem sizes become feasible
- Improving growth rate often requires new techniques

Formalizing growth rates

- $T(n)$ is $O(f(n))$ \([T: Z^+ \to R^+] \)
 - If sufficiently large n, $T(n)$ is bounded by a constant multiple of $f(n)$
 - Exist c, n_0, such that for $n > n_0$, $T(n) < c \times f(n)$
- $T(n)$ is $O(f(n))$ will be written as:
 - $T(n) = O(f(n))$
 - Be careful with this notation

Prove $3n^2 + 5n + 20$ is $O(n^2)$

Choose $c = 6, n_0 = 5$

Lower bounds

- $T(n)$ is $\Omega(f(n))$
 - $T(n)$ is at least a constant multiple of $f(n)$
 - There exists an n_0, and $\varepsilon > 0$ such that $T(n) > \varepsilon f(n)$ for all $n > n_0$
- Warning: definitions of Ω vary
- $T(n)$ is $\Theta(f(n))$ if $T(n)$ is $O(f(n))$ and $T(n)$ is $\Omega(f(n))$

Useful Theorems

- If $\lim (f(n) / g(n)) = c$ for $c > 0$ then $f(n) = \Theta(g(n))$
- If $f(n)$ is $O(g(n))$ and $g(n)$ is $O(h(n))$ then $f(n)$ is $O(h(n))$
- If $f(n)$ is $O(h(n))$ and $g(n)$ is $O(h(n))$ then $f(n) + g(n)$ is $O(h(n))$
Ordering growth rates

- For $b > 1$ and $x > 0$
 - $\log_b n$ is $O(nx)$

- For $r > 1$ and $d > 0$
 - n^d is $O(r^n)$

Graph Theory

- $G = (V, E)$
 - V – vertices
 - E – edges

- Undirected graphs
 - Edges sets of two vertices (u, v)

- Directed graphs
 - Edges ordered pairs (u, v)

- Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops

Definitions

- Path: v_1, v_2, \ldots, v_k, with (v_i, v_{i+1}) in E
 - Simple Path
 - Cycle
 - Simple Cycle

- Distance

- Connectivity
 - Undirected
 - Directed (strong connectivity)

- Trees
 - Rooted
 - Unrooted

Graph search

- Find a path from s to t

$S = \{s\}$

While there exists (u, v) in E with u in S and v not in S

$\text{Pred}(v) = u$

Add v to S

If $(v = t)$ then path found

Breadth first search

- Explore vertices in layers
 - s in layer 1
 - Neighbors of s in layer 2
 - Neighbors of layer 2 in layer 3 . . .

Key observation

- All edges go between vertices on the same layer or adjacent layers
Bipartite

• A graph V is bipartite if V can be partitioned into V_1, V_2 such that all edges go between V_1 and V_2
• A graph is bipartite if it can be two colored

Testing Bipartiteness

• If a graph contains an odd cycle, it is not bipartite

Algorithm

• Run BFS
• Color odd layers red, even layers blue
• If no edges between the same layer, the graph is bipartite
• If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite