The Fraction Knapsack Problem: A Greedy Example

Given:
A knapsack of capacity \(W \) and \(n \) items with weights \(w_1, w_2, \ldots, w_n \) and values \(v_1, v_2, \ldots, v_n \).

Find:
\(\alpha_1, \alpha_2, \ldots, \alpha_n \) maximizing \(\sum \alpha_i v_i \).

Subject to: \(0 \leq \alpha_i \leq 1 \), and \(\sum \alpha_i w_i = W \).

[Note: "0-1 Knapsack" same, except \(\alpha_i = 0 \) or \(1 \).]

Examples

<table>
<thead>
<tr>
<th>Object</th>
<th>Weight</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liqueur-Filled Bon Bons</td>
<td>1</td>
<td>$12</td>
</tr>
<tr>
<td>Dark Chocolate Truffles</td>
<td>2</td>
<td>$18</td>
</tr>
<tr>
<td>Milk Choc. Spring Surprise</td>
<td>3</td>
<td>$24</td>
</tr>
</tbody>
</table>

\[
\begin{array}{cccccc}
\text{Item}	w_i & v_i & \alpha_i w_i & \alpha_i v_i & \alpha_i & \alpha_i v_i					
BB	1	$12	0	0	1	$12
T	2	$18	1	1	1	$18
SS	3	$24	1	2/3	1	$16
Total		$42	$45			$46
\end{array}
\]

Greedy Solution

- Order by decreasing value per unit weight (renumbering as needed)

\[
\frac{v_1}{w_1} \geq \frac{v_2}{w_2} \geq \cdots \geq \frac{v_n}{w_n}
\]

- Take as much 1 as possible, then as much 2 as possible, …

The Greedy Choice Pays

Claim 1: 3 an optimal solution with as much as possible of item 1 in the knapsack, namely \(\alpha_1 = \min(w_1, W) \). Equivalently \(\alpha_1 = \min(w_1, W/w_1) \).

Proof: Among all optimal solutions, let \(\beta_1, \beta_2, \ldots, \beta_n \) be one with maximum \(\beta_1 \), but suppose (for the sake of contradiction) \(\beta_1 < \alpha_1 \). Since \(\beta_1 \) has less of 1 than \(\alpha_1 \), it must have more of something else, say \(j \), i.e. \(\beta_j > \alpha_j \). Form \(\beta' \) from \(\beta \) by carrying a little more 1 and less \(j \), say \(\epsilon = \min(\beta_1 - \alpha_1, w_1 (\alpha_1 - \beta_1)) > 0 \). Then \(\beta'_1 \) will not have a lower value than \(\beta_1 \), since \(v_1/w_1 \), \(v_j/w_j \) \(\geq 0 \), but \(\epsilon (v_1/w_1, v_j/w_j) = 0 \), but \(\beta'_1 > \beta_1 \), contradicting our choice of \(\beta_1 \). QED

Optimal Sub-solutions

Claim 2: The best solution for any given \(\alpha_1 \) has \(\alpha_2, \ldots, \alpha_n \) equal to an optimal solution for the smaller knapsack problem having items 2, 3, …, \(n \) and capacity \(W - \alpha_1 w_1 \).

Proof: If not, we could get a better solution.
Keys to Greedy Algorithms

“Greedy Choice Property”: Making a locally optimal (“greedy”) 1st step cannot prevent reaching a global optimum. [E.g., see Claim 1.]

“Optimal Substructure”: The optimal solution to the problem contains optimal solutions to subproblems. [E.g., see Claim 2. True of Dynamic Programming, too.]

NOTE:
- Greedy algorithms are very natural for optimization problems, but
- they don’t always work
- E.g., if you try greedy approach for 0-1 knapsack on the candy example, it will choose to take all of BB & T, for a total value of $30, well below the optimal $42
- So: Correctness proofs are important!