Dynamic Programming

- Outline:
 - Example 1 – Licking Stamps
 - General Principles
 - Example 2 – Knapsack (§ 5.10)
 - Example 3 – Sequence Comparison (§ 6.8)

Licking Stamps

- Given:
 - Large supply of 5¢, 4¢, and 1¢ stamps
 - An amount N
- Problem: choose fewest stamps totaling N

How to Lick 27¢

<table>
<thead>
<tr>
<th># of 5¢ Stamps</th>
<th># of 4¢ Stamps</th>
<th># of 1¢ Stamps</th>
<th>Total Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Moral: Greed doesn’t pay

A Simple Algorithm

- At most N stamps needed, etc.
 for a = 0, ..., N {
 for b = 0, ..., N {
 for c = 0, ..., N {
 if (5a+4b+c == N && a+b+c is new min) {
 (retain (a,b,c));)
 output retained triple;
 }
 }
 }
 }

- Time: O(N³)
 (Not too hard to see some optimizations, but we’re after bigger fish...)

“Dynamic Programming”

Program — A plan or procedure for dealing with some matter — Webster’s New World Dictionary
Better Idea

Theorem: If last stamp licked in an optimal solution has value \(v \), then previous stamps form an optimal solution for \(N - v \).

Proof: if we could improve the solution for \(N \) by using opt for \(N - v \).

\[
M(i) = \min \begin{cases}
0 & \text{if } i = 0 \\
1 + M(i - 5) & \text{if } i \geq 5 \\
1 + M(i - 4) & \text{if } i \geq 4 \\
1 + M(i - 1) & \text{if } i \geq 1
\end{cases}
\]

where \(M(i) \) = min number of stamps totaling \(i \)

New Idea: Recursion

\[
M(i) = \min \begin{cases}
0 & \text{if } i = 0 \\
1 + M(i - 5) & \text{if } i \geq 5 \\
1 + M(i - 4) & \text{if } i \geq 4 \\
1 + M(i - 1) & \text{if } i \geq 1
\end{cases}
\]

Time: \(2^{3N} \)

Another New Idea:
Avoid Recomputation

- Tabulate values of solved subproblems
 - Top-down: “memoization”
 - Bottom up:

 \[
 M[i] = \begin{cases}
 0 & \text{if } i = 0 \\
 1 + M[i - 5] & \text{if } i \geq 5 \\
 1 + M[i - 4] & \text{if } i \geq 4 \\
 1 + M[i - 1] & \text{if } i \geq 1
 \end{cases}
 \]

- Time: \(O(N) \)

Finding How Many Stamps

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
M[0] & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\end{array}
\]

\(1 + \text{Min}(3, 1, 3) = 2 \)

Finding Which Stamps:
Trace-Back

\[
\begin{array}{cccccccccccc}
1 & 0 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
M[0] & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\end{array}
\]

\(1 + \text{Min}(3, 1, 3) = 2 \)

Complexity Note

- \(O(N) \) is better than \(O(N^3) \) or \(O(3^{N/5}) \)
- But still exponential in input size (log \(N \) bits)
 - (E.g., miserably slow if \(N \) is 64 bits – \(2^{24} \) steps for 64 bit input.)
- Note: can do in \(O(1) \) for 5c, 4c, and 1c but not in general. See “NP-Completeness” later
Elements of Dynamic Programming

- What feature did we use?
- What should we look for to use again?
- “Optimal Substructure”
 Optimal solution contains optimal subproblems
- “Repeated Subproblems”
 The same subproblems arise in various ways

The Knapsack Problem (§ 5.10)

Given positive integers \(W, w_1, w_2, \ldots, w_n \)

Find a subset of the \(w_i \)’s totaling exactly \(W \).

Alternate (Easier?) Problem: Is there one?

(Like stamp problem, but limited supply of each.)

Motivation: simple 1-d abstraction of packing boxes, trucks, VLSI chips, ...

Knapsack Example

\(W = 14 \)

\(w_1, \ldots, w_4 = 2, 5, 9, 11 \)

- YES: \(5+9 = 14 \)
- NO:
 - all singletons \(\leq 11 \): too small
 - all pairs too small, except \(9+11, 5+11 \) too big
 - all triples \(\geq 16 \): too big
 - all quadruples: too big

\(2^n \) possibilities

Knapsack Example

\(w_1, \ldots, w_4 = 2, 5, 9, 11 \) \(W=15 \)

- YES
- NO:
 - all singletons \(\leq 11 \): too small
 - all pairs too small, except \(9+11, 5+11 \) too big
 - all triples \(\geq 16 \): too big
 - all quadruples: too big

\(2^n \) possibilities

Knapsack Example

\(P(n, W) = P(n-1, W) \lor P(n-1, W-w_i) \)

\(W = 14: \) YES

\(W = 15: \) NO

Knapsack Example

\(i \mid X \mid 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \mid 10 \mid 11 \mid 12 \mid 13 \mid 14 \mid 15 \)

\(0 \mid 1 \mid 0 \)

\(1 \mid 1 \mid 0 \mid 1 \mid 0 \)

\(2 \mid 1 \mid 0 \mid 1 \mid 0 \mid 1 \mid 0 \mid 1 \mid 0 \)

\(3 \mid 1 \mid 0 \mid 0 \mid 0 \mid 0 \mid 0 \mid 0 \)

\(4 \mid 1 \mid 0 \mid 0 \mid 0 \mid 0 \mid 1 \mid 0 \)

\(i = \) item

\(X = \) yes/no

\(P(0, X) = \) true iff \(X = \) true

- Defn: Let \(P(i, X) \) be true iff there is a subset of first \(i \) weights \(w_1, w_2, \ldots, w_i \) totaling \(X \)
- Assume we know how to evaluate \(P(n-1) \)
 - Case 1: \(P(n-1) = \) true – done; \(w_n \) unneeded
 - Case 2: \(P(n-1) = \) false – may or may not be a solution, but if there is one, it includes \(w_n \) and other included weights total \(W-w_n \), so \(P(n, W) = P(n-1, W-w_n) \)
- Algorithm:
 - \(P(n, W) = P(n-1, W) \lor P(n-1, W-w_i) \) if \(W-w_i \geq 0 \)
 - Basis: \(P(0, X) = \) true iff \(X = \) true

Solve by Induction? Try 1

- Defn: Let \(P(i, X) \) be true iff there is a subset of first \(i \) weights \(w_1, w_2, \ldots, w_i \) totaling \(W \)
- Assume we know how to evaluate \(P(n-1) \)
 - Case 1: \(P(n-1) = \) true – done; \(w_n \) unneeded
 - Case 2: \(P(n-1) = \) false – may or may not be a solution, but if there is one, it includes \(w_n \) and other included weights total \(W-w_n \), but I.H. doesn’t tell us how to find it.

Solve by Induction? Try 2

- Defn: Let \(P(i, X) \) be true iff there is a subset of first \(i \) weights \(w_1, w_2, \ldots, w_i \) totaling \(X \)
- Assume we know how to evaluate \(P(n-1) \)
 - Case 1: \(P(n-1) = \) true – done; \(w_n \) unneeded
 - Case 2: \(P(n-1) = \) false – may or may not be a solution, but if there is one, it includes \(w_n \) and other included weights total \(W-w_n \), so \(P(n, W) = P(n-1, W-w_n) \)
- Algorithm:
 - \(P(n, W) = P(n-1, W) \lor P(n-1, W-w_i) \) if \(W-w_i \geq 0 \)
 - Basis: \(P(0, X) = \) true iff \(X = \) true

P(n, W) = P(n-1, W) + P(n-1, W-w_i)
Dynamic Programming?

\[P(n,W) = P(n-1, W) \lor P(n-1, W-w_i) \]

- Optimal substructure?
 - Best/only way to fill a big knapsack implicitly fills smaller ones with fewer objects in the best or only way
- Repeated subproblems?
 - Smallest cases potentially common to many bigger instances

Complexity Notes

- Time is \(O(NW) \)
- May or may not beat naive \(2^n \)
- But still partially exponential in input size (\(N \log W \) bits)
 - E.g., 100 weights, 64 bits each \(\sim 100 \cdot 2^n \) array elements.
 - C.v., e.g., Skyline 100 bids, 64 bit coords \(\sim c \cdot 100 \cdot \log 100 \) steps.
- See “NP-Completeness” later