Breadth-First Search

- Completely explore the vertices in order of their distance from \(v \)
- Naturally implemented using a queue
- Works on general graphs, not just trees

BFS(\(v \))

Global initialization: mark all vertices "undiscovered"
BFS(\(v \))
mark \(v \) "discovered"
while queue not empty
\(u = \text{remove}_\text{first}(\text{queue}) \)
for each edge \(\{u,x\} \)
if \(x \) is undiscovered
mark \(x \) discovered
append \(x \) on queue
mark \(u \) completed

BFS analysis

- Each edge is explored once from each end-point
- Each vertex is discovered by following a different edge
- Total cost \(O(m) \) where \(m=\# \) of edges
- Disconnected? Restart @ undiscovered vertices: \(O(m+n) \)

Properties of (Undirected) BFS(\(v \))

- BFS(\(v \)) visits \(x \) if and only if there is a path in \(G \) from \(v \) to \(x \).
- Edges into then-undiscovered vertices define a tree – the "breadth first spanning tree" of \(G \).
- Level \(i \) in this tree are exactly those vertices \(u \) such that the shortest path (in \(G \), not just the tree) from the root \(v \) is of length \(i \).
- All non-tree edges join vertices on the same or adjacent levels
BFS Application: Shortest Paths

Tree gives shortest paths from start vertex can label by distances from start

Depth-First Search

• Follow the first path you find as far as you can
• Back up to last unexplored edge when you reach a dead end, then go as far you can
• Naturally implemented using recursive calls or a stack
• Works on general graphs, not just trees

DFS(v) – Recursive version

Global Initialization:
mark all vertices v "undiscovered" via v.dfs# = -1
dfscounter = 0

DFS(v)
 v.dfs# = dfscounter++ // mark v “discovered”
 for each edge (v,x)
 if (x.dfs# = -1) // tree edge (x previously undiscovered)
 DFS(x)
 else ... // code for back-, fwd-, parent,
 // edges, if needed
 // mark v “completed,” if needed

Properties of (Undirected) DFS(v)

• Like BFS(v):
 – DFS(v) visits x ⇔ there is a path in G from v to x
 – Edges into then-undiscovered vertices define a tree – the "depth first spanning tree" of G
• Unlike the BFS tree:
 – the DF spanning tree isn’t minimum depth
 – its levels don’t reflect min distance from the root
 – non-tree edges never join vertices on the same or adjacent levels
• BUT…
Non-tree edges

- All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree
- Called back/forward edges (depending on end)
- No cross edges!

Application: Articulation Points

- A node in an undirected graph is an articulation point iff removing it disconnects the graph
- Articulation points represent vulnerabilities in a network – single points whose failure would split the network into 2 or more disconnected components

Articulation Points

- A node in an undirected graph is an articulation point iff removing it disconnects the graph
- Articulation points represent vulnerabilities in a network – single points whose failure would split the network into 2 or more disconnected components

Exercise

- draw a graph, ~ 10 nodes, A-J
- redraw as via DFS
- add dfs/#s & tree/back edges (solid/dashed)
- find cycles
- give alg to find cycles via dfs; does G have any?
- find articulation points
- what do cycles have to do with articulation points?
- alg to find articulation points via DFS???

Articulation Points from DFS

- Root node is an articulation point iff it has more than one child
- Leaf is never an articulation point
- non-leaf, non-root node u is an articulation point ⇔ no non-tree edge goes above u from a sub-tree below some child of u

Articulation Points: the "LOW" function

- Definition: LOW(v) is the lowest dfs# of any vertex that is either in the dfs subtree rooted at v (including v itself) or connected to a vertex in that subtree by a back edge.
- Key idea 1: if some child x of v has LOW(x) ≥ dfs#(v) then v is an articulation point.
- Key idea 2: LOW(v) = \(\min \{ \text{LOW}(w) \mid w \text{ a child of } v \} \cup \{ \text{dfs#}(x) \mid \{v,x\} \text{ is a back edge from } v \} \)
Properties of DFS Vertex Numbering

- If u is an ancestor of v in the DFS tree, then
 \[\text{dfs#}(u) \preceq \text{dfs#}(v). \]

DFS(v) for Finding Articulation Points

Global initialization: \(v.dfs# = -1 \) for all \(v \).

DFS(v)
- \(v.dfs# = \text{dfscounter}++ \)
- \(v.low = v.dfs# \)

for each edge \((v,x)\)
- if \(x.dfs# == -1 \) // x is undiscovered
 - DFS(x)
 - \(v.low = \min(v.low, x.low) \)
 - if \(x.low \geq v.dfs# \)
 - print "v is art. pt., separating x"
 - else if (x is not v’s parent)
 - \(v.low = \min(v.low, x.dfs#) \)

Equiv: "if \((v,x) \) is a back edge"

Why?

Articulation Points

Articulation Point