

Examples										
Object Liqueur-Filled Bon Bons Dark Chocolate Truffles Milk Choc. Spring Surprise						Weight 1 2 3		<u>Value</u> \$12 \$18 \$24		
	i	Wi	v _i	α_{i}	$\alpha_i v_i$	α_{i}	$\alpha_i v_i$	α_{i}	$\alpha_i v_i$	
2	BB	1	\$12	0	\$0	5/6	\$10	1	\$12	
=	т	2	\$18	1	\$18	5/6	\$15	1	\$18	
>	SS	3	\$24	1	\$24	5/6	\$20	2/	3 \$16	
	Total				\$42		\$45		\$46	
CSE 421, Su '04, Ruzzo										

The Greedy Choice Pays

Claim 1: \exists an optimal solution with as much as possible of item 1 in the knapsack, namely min(w_1 , W). Equivalently $\alpha_1 = \min(w_1, W)/w_1$.

Proof: Among all optimal solutions, let $\beta_1, \beta_2, ..., \beta_n$ be one with maximum β_1 , but suppose (for the sake of contradiction) $\beta_1 < \alpha_1$. Since β has less of 1 than α , it must have more of something else, say *j*, i.e. $\beta_j > \alpha_j$. Form β from β by carrying a little more 1 and less *j*, say $\varepsilon = \min((\beta_j - \alpha_j) w_j, (\alpha_1 - \beta_1) w_1) > 0$. Then β' will not have a lower value than β , since $\varepsilon(v_1/w_1 - v_1/w_j) \ge$ 0, but $\beta_1' > \beta_1$, contradicting our choice of β . QED

Optimal Sub-solutions

Claim 2: The best solution for any given α_1 has α_2 , ..., α_n equal to an optimal solution for the smaller knapsack problem having items 2, 3, ..., n and capacity *W* - $\alpha_1 w_1$.

Proof: If not, we could get a better solution.

CSE 421, Su '04, Ruzzo

Keys to Greedy Algorithms

"Greedy Choice Property":

Making a locally optimal ("greedy") 1st step cannot prevent reaching a global optimum. [E.g., see Claim 1.]

"Optimal Substructure":

The optimal solution to the problem contains optimal solutions to subproblems. [E.g., see Claim 2. True of Dynamic Programming, too.]

CSE 421, Su '04, Ruzzo