Dynamic Programming

Outline:
- Example 1 – Licking Stamps
- General Principles
- Example 2 – Knapsack (§ 5.10)
- Example 3 – Sequence Comparison (§ 6.8)

Licking Stamps

Given:
- Large supply of 5¢, 4¢, and 1¢ stamps
- An amount N

Problem: choose fewest stamps totaling N

How to Lick 27¢

<table>
<thead>
<tr>
<th># of 5¢ Stamps</th>
<th># of 4¢ Stamps</th>
<th># of 1¢ Stamps</th>
<th>Total Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Moral: Greed doesn’t pay

A Simple Algorithm

At most N stamps needed, etc.

for a = 0, ..., N {
 for b = 0, ..., N {
 for c = 0, ..., N {
 if (5a + 4b + c == N && a + b + c is new min)
 {retain (a,b,c);}}}
 output retained triple;}

Time: O(N³)

(Not too hard to see some optimizations, but we’re after bigger fish...)

“Dynamic Programming”

Program — A plan or procedure for dealing with some matter — Webster’s New World Dictionary
Better Idea

Theorem: If last stamp licked in an optimal solution has value v, then previous stamps form an optimal solution for N-v.

Proof: if not, we could improve the solution for N by using opt for N-v.

\[
M(i) = \min \begin{cases}
0 & i = 0 \\
1 + M(i-5) & i \geq 5 \\
1 + M(i-4) & i \geq 4 \\
1 + M(i-1) & i \geq 1
\end{cases}
\]

where \(M(i)\) = min number of stamps totaling \(i\)

New Idea: Recursion

\[
M(i) = \min \begin{cases}
0 & i = 0 \\
1 + M(i-5) & i \geq 5 \\
1 + M(i-4) & i \geq 4 \\
1 + M(i-1) & i \geq 1
\end{cases}
\]

Time: \(> 3^{N/5}\)

Another New Idea: Avoid Recomputation

- Tabulate values of solved subproblems
 - Top-down: “memoization”
 - Bottom up:
 \[
 i = 0, \ldots, N \text{ do } \quad M[i] = \min \begin{cases}
0 & i = 0 \\
1 + M[i-5] & i \geq 5 \\
1 + M[i-4] & i \geq 4 \\
1 + M[i-1] & i \geq 1
\end{cases}
\]
- Time: \(O(N)\)

Finding How Many Stamps

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\hline
0 & 1 & 2 & 3 & 1 & 1 & 2 & 3 & 2 & \ldots & \ldots & \ldots & \ldots & \ldots \\
\end{array}
\]

\[1 + \text{Min}(3,1,3) = 2\]

Finding Which Stamps: Trace-Back

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\hline
0 & 1 & 2 & 3 & 1 & 1 & 2 & 3 & 2 & \ldots & \ldots & \ldots & \ldots & \ldots \\
\end{array}
\]

\[1 + \text{Min}(3,1,3) = 2\]

Complexity Note

- \(O(N)\) is better than \(O(N^3)\) or \(O(3^{N/5})\)
- But still exponential in input size (log N bits)

 (E.g., miserably slow if N is 64 bits – c \(2^{64}\) steps for 64 bit input.)
- Note: can do in \(O(1)\) for 5¢, 4¢, and 1¢ but not in general. See “NP-Completeness” later
Elements of Dynamic Programming

- What feature did we use?
- What should we look for to use again?
- “Optimal Substructure”
 - Optimal solution contains optimal subproblems
- “Repeated Subproblems”
 - The same subproblems arise in various ways

The Knapsack Problem (§ 5.10)

Given positive integers \(W, w_1, w_2, \ldots, w_n \).
Find a subset of the \(w_i \)'s totaling exactly \(W \).
Alternate (Easier?) Problem: Is there one?

(Like stamp problem, but limited supply of each.)

Motivation: simple 1-d abstraction of packing boxes, trucks, VLSI chips, ...

Knapsack Example

\(w_1, \ldots, w_4 = 2, 5, 9, 11 \)

- \(W = 14 \)
 - § YES: \(5 + 9 = 14 \)
- \(W = 15 \)
 - § NO:
 - all singletons 11: too small
 - all pairs too small, except 9+11, 5+11 too big
 - all triples 16: too big
 - all quadruples: too big

2\(^n\) possibilities

Solve by Induction? Try 1

- Defn: Let \(P(i, X) \) be true iff there is a subset of first \(i \) weights \(w_1, w_2, \ldots, w_i \) totaling \(X \).
- Assume we know how to evaluate \(P(n-1, X) \) for all \(X < W \).
 - Case 1: \(P(n-1, W) = True \) – done; \(w_n \) unneeded
 - Case 2: \(P(n-1, W) = False \) – may or may not be a solution, but if there is one, it includes \(w_n \) and other included weights total \(W - w_n \), but I.H. doesn't tell us how to find it.

Solve by Induction? Try 2

- Defn: Let \(P(i, X) \) be true iff there is a subset of first \(i \) weights \(w_1, w_2, \ldots, w_i \) totaling \(X \).
- Assume we know \(P(n-1, X) \) for all \(X < W \).
 - Case 1: \(P(n-1, W) = True \) – done; \(w_n \) unneeded
 - Case 2: \(P(n-1, W) = False \) – may or may not be a solution, but if there is one, it includes \(w_n \) and other included weights total \(W - w_n \), so \(P(n, W) = P(n-1, W - w_n) \).

Algorithm:
 - \(P(n, W) = P(n-1, W) \lor P(n-1, W - w_n) \)
 - Basis: \(P(0, X) = True \) iff \(X = 0 \)

Knapsack Example

\(w_1, \ldots, w_4 = 2, 5, 9, 11 \) \(W=15 \)

\[i \mid X \mid 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \mid 10 \mid 11 \mid 12 \mid 13 \mid 14 \mid 15 \]
\[0 \mid 1 \mid 0 \]
\[1 \mid 1 \mid 0 \mid 1 \mid 0 \]
\[2 \mid 1 \mid 0 \mid 1 \mid 0 \mid 1 \mid 0 \]
\[3 \mid 1 \mid 0 \mid 0 \mid 0 \mid 0 \mid 0 \]
\[4 \mid 1 \mid 0 \]

W = 14: Yes
W = 15: No
Dynamic Programming?

\[P(n,W) = P(n-1, W) \lor P(n-1, W-w_n) \]

- Optimal substructure?
 Best/only way to fill a big knapsack implicitly fills smaller ones with fewer objects in the best or only way
- Repeated subproblems?
 Smallest cases potentially common to many bigger instances

Complexity Notes

- Time is \(O(NW) \)
- May or may not beat naive \(2^N \)
- But still partially exponential in input size \((N \log W)\)
 - E.g., 100 weights, 64 bits each \(\rightarrow 100 \cdot 2^{64} \) array elements.
 - C.v., e.g., skyline 100 bldgs, 64 bit coords \(\rightarrow c \cdot 100 \cdot \log 100 \) steps.
- See “NP-Completeness” later