CSE 421: Introduction to Algorithms

Stable Matching, Complexity, and Representative Problems
Winter 2003
Paul Beame

Women get the raw deal in the G-S algorithm
- \(S^* = \{ (m, \text{best}(m)) : m \in M \} \)
- For each \(w \), \(\text{worst}(w) = \) lowest rated man among all valid partners of \(w \)
- Claim: \(S^* = \{ (\text{worst}(w), w) : w \in W \} \)
- Proof:
 - Suppose \((m, w) \in S^* \), \(m \neq \text{worst}(w) = m' \)
 - Consider stable matching \(S' \) s.t. \((m', w) \in S' \)
 - must exist since \(m' = \text{worst}(w) \)
 - In \(S' \), \(m \) is paired with \(w \neq \text{best}(m) \)
 - Therefore \((m, w), (m', w) \in S' \) but
 - \(m >_m m' \) and \(w >_w w' \) so \((m, w) \) would prefer each other, contradicting stability of \(S \)

Measuring efficiency:
The RAM model
- RAM = Random Access Machine
- Time = \# of instructions executed in an ideal assembly language
 - each simple operation (+,-,*,-,if,call) takes one time step
 - each memory access takes one time step

Complexity analysis
- Problem size \(N \)
 - Worst-case complexity: \(\text{max} \# \) steps
 algorithm takes on any input of size \(N \)
 - Best-case complexity: \(\text{min} \# \) steps
 algorithm takes on any input of size \(N \)
 - Average-case complexity: \(\text{avg} \# \) steps
 algorithm takes on inputs of size \(N \)

Stable Matching
- Problem size
 - \(N = 2n^2 \) words
 - \(2n \) people each with a preference list of length \(n \)
 - \(2n \log n \) bits
 - specifying an ordering for each preference list takes \(n \log n \) bits
 - Brute force algorithm
 - Try all \(n! \) possible matchings
 - Gale-Shapley Algorithm
 - \(n^2 \) iterations, each costing constant time
 - For each man an array listing the women in preference order
 - For each woman an array listing the preferences indexed by the names of the men

Complexity
- The complexity of an algorithm associates a number \(T(N) \), the best/worst/average-case
time the algorithm takes, with each problem size \(N \).
- Mathematically,
 - \(T \) is a function that maps positive integers
giving problem size to positive real numbers giving number of steps.
Efficient = Polynomial Time

- Polynomial time
 - Running time $T(N) \leq cN^d + d$ for some $c, d, k > 0$
- Why polynomial time?
 - If problem size grows by at most a constant factor then so does the running time
 - $T(2N) \leq c(2N)^d + d \leq 2^k(cN^d + d)$
 - Polynomial-time is exactly the set of running times that have this property
 - Typical running times are small degree polynomials, mostly less than N^3, at worst N^{100}

Why polynomial?

- If problem size grows by at most a constant factor then so does the running time
- $T(2N) \leq c(2N)^d + d \leq 2^k(cN^d + d)$
- Polynomial-time is exactly the set of running times that have this property

Typical running times are small degree polynomials, mostly less than N^3, at worst N^{100}

Complexity

- $T(N)$
- Problem size

O-notation etc

- Given two positive functions f and g
 - $f(N) \leq O(g(N))$ iff there is a constant $c > 0$ so that $f(N)$ is eventually always less than or equal to $c g(N)$
 - $f(N) \leq o(g(N))$ iff the ratio $f(N)/g(N)$ goes to 0 as N gets large
 - $f(N) \geq \Omega(g(N))$ iff there is a constant $c > 0$ so that $f(N)$ is greater than or equal to $c g(N)$ for infinitely many values of N
 - $f(N) \leq \Theta(g(N))$ iff $f(N)$ is $O(g(N))$ and $f(N)$ is $\Omega(g(N))$

Note: The definition of Ω is the same as "$f(N)$ is not $o(g(N))$"

5 Representative Problems

- Interval Scheduling
 - Single resource
 - Reservation requests
 - Of form "Can I reserve it from start time s to finish time f?"
 - $s < f$
 - Find: maximum number of requests that can be scheduled so that no two reservations have the resource at the same time

Interval scheduling

- Formally
 - Requests 1, 2, ..., n
 - Request i has start time s_i and finish time f_i; $s_i < f_i$
 - Requests i and j are compatible iff either
 - request i is for a time entirely before request j
 - $f_i \leq s_j$
 - or, request j is for a time entirely before request i
 - $f_j \leq s_i$
 - Set A of requests is compatible iff every pair of requests $i, j \in A$, $i \neq j$ is compatible
 - Goal: Find maximum size subset A of compatible requests
Interval Scheduling
- We shall see that an optimal solution can be found using a “greedy algorithm”
 - Myopic kind of algorithm that seems to have no look-ahead
 - These algorithms only work when the problem has a special kind of structure
 - When they do work they are typically very efficient

Weighted Interval Scheduling
- Same problem as interval scheduling except that each request i also has an associated value or weight w_i
 - w_i might be:
 - amount of money we get from renting out the resource for that time period
 - amount of time the resource is being used
 - Goal: Find compatible subset A of requests with maximum total weight

Weighted Interval Scheduling
- Ordinary interval scheduling is a special case of this problem
 - Take all $w_i = 1$
- Problem is quite different though
 - E.g. one weight might dwarf all others
 - “Greedy algorithms” don’t work
- Solution: “Dynamic Programming”
 - builds up optimal solutions from smaller problems using a compact table to store them

Bipartite Matching
- A graph $G = (V, E)$ is bipartite iff
 - V consists of two disjoint pieces X and Y
 - such that every edge e in E is of the form (x, y) where $x \in X$ and $y \in Y$
 - Similar to stable matching situation but in that case all possible edges were present
 - $M \subseteq E$ is a matching in G iff no two edges in M share a vertex
 - Goal: Find a matching M in G of maximum possible size

Bipartite Matching
- Models assignment problems
 - X represents jobs, Y represents machines
 - X represents professors, Y represents courses
 - If $|X| = |Y| = n$
 - G has perfect matching iff maximum matching has size n
 - Solution: polynomial-time algorithm using “augmentation” technique
 - also used for solving more general class of network flow problems

Independent Set
- Given a graph $G = (V, E)$
 - A set $I \subseteq V$ is independent iff no two nodes in I are joined by an edge
 - Goal: Find an independent subset I in G of maximum possible size
 - Models conflicts and mutual exclusion
Independent Set

- Generalizes
 - Interval Scheduling
 - Vertices in the graph are the requests
 - Vertices are joined by an edge if they are not compatible
 - Bipartite Matching
 - Given bipartite graph $G = (V, E)$ create new graph $G' = (V', E')$ where
 - $V' = E$
 - Two elements of V' (which are edges in G) are joined if they share an endpoint in G

Bipartite Matching

Independent Set

- No polynomial-time algorithm is known
 - But to convince someone that there was a large independent set all you’d need to do is show it to them
 - they can easily convince themselves that the set is large enough and independent
 - Convincing someone that there isn’t one seems much harder
 - We will show that Independent Set is NP-complete
 - Class of all the hardest problems that have the property above

Competitive Facility Location

- Two players competing for market share in a geographic area
 - e.g. McDonald’s, Burger King
- Rules:
 - Region is divided into n zones, $1, \ldots, n$
 - Each zone i has a value b_i
 - Revenue derived from opening franchise in that zone
 - No adjacent zones may contain a franchise
 - i.e., zoning regulations limit density
 - Players alternate opening franchises
- Find: Given a target total value B is there a strategy for the second player that always achieves $\geq B$?

Competitive Facility Location

- Model geography by
 - A graph $G = (V, E)$ where
 - V is the set $\{1, \ldots, n\}$ of zones
 - E is the set of pairs (i, j) such that i and j are adjacent zones
- Observe:
 - The set of zones with franchises will form an independent set in G

Target $B = 20$ achievable?

What about $B = 25$?
Competitive Facility Location

- Checking that a strategy is good seems hard
 - You’d have to worry about all possible responses at each round!
 - A giant search tree of possibilities
- Problem is PSPACE-complete
 - Likely strictly harder than NP-complete problems
 - PSPACE-complete problems include
 - Game-playing problems such as $n \times n$ chess and checkers
 - Logic problems such as whether quantified boolean expressions are always true
 - Verification problems for finite automata