Computational Complexity

- Classify problems according to the amount of computational resources used by the best algorithms that solve them
- Recall:
 - worst-case running time of an algorithm
 - max \# steps algorithm takes on any input of size \(n \)
- Define:
 - \(\text{TIME}(f(n)) \) to be the set of all decision problems solved by algorithms having worst-case running time \(O(f(n)) \)

Decision problems

- Computational complexity usually analyzed using decision problems
 - answer is just 1 or 0 (yes or no).
- Why?
 - much simpler to deal with
 - deciding whether \(G \) has a path from \(s \) to \(t \), is certainly no harder than finding a path from \(s \) to \(t \) in \(G \), so a lower bound on deciding is also a lower bound on finding
 - Less important, but if you have a good decider, you can often use it to get a good finder.

Polynomial time

- Define \(\mathcal{P} \) (polynomial-time) to be
 - the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.
 \[\mathcal{P} = \bigcup_{k \geq 0} \text{TIME}(n^k) \]

Beyond \(\mathcal{P} \)?

- There are many natural, practical problems for which we don’t know any polynomial-time algorithms
- e.g. decisionTSP:
 - Given a weighted graph \(G \) and an integer \(k \), does there exist a tour that visits all vertices in \(G \) having total weight at most \(k \)?

Relative Complexity of Problems

- Want a notion that allows us to compare the complexity of problems
- Want to be able to make statements of the form
 - “If we could solve problem \(R \) in polynomial time then we can solve problem \(L \) in polynomial time”
 - “Problem \(R \) is at least as hard as problem \(L \)”
Polynomial Time Reduction

- $L \leq_p R$ if there is an algorithm for L using a ‘black box’ (subroutine) that solves R that
 - Uses only a polynomial number of steps
 - Makes only a polynomial number of calls to a subroutine for R

Thus, poly time algorithm for R implies poly time algorithm for L

If you can prove there is no fast algorithm for L, then that proves there is no fast algorithm for R.

A Special kind of Polynomial-Time Reduction

- We will always use a restricted form of polynomial-time reduction often called Karp or many-one reduction.

- $L \leq_M^1 R$ if and only if there is an algorithm for L given a black box solving R that on input x
 - Runs for polynomial time computing an input $T(x)$
 - Makes one call to the black box for R
 - Returns the answer that the black box gave

We say that the function T is the reduction.

Why the name reduction?

- Weird: it maps an easier problem into a harder one.

- Solving partial differential equations in general is a much harder problem than solving E&M problems.

A geek joke

An engineer
- is placed in a kitchen with an empty kettle on the table and told to boil water; she fills the kettle with water, puts it on the stove, turns on the gas and boils water.
- she is next confronted with a kettle full of water sitting on the counter and told to boil water; she puts it on the stove, turns on the gas and boils water.

A mathematician
- is placed in a kitchen with an empty kettle on the table and told to boil water; he fills the kettle with water, puts it on the stove, turns on the gas and boils water.
- he is next confronted with a kettle full of water sitting on the counter and told to boil water: he empties the kettle in the sink, places the empty kettle on the table and says, ‘I’ve reduced this to an already solved problem’.

Reductions from a Special Case to a General Case

Show: Vertex-Cover \leq_p Set-Cover

- Vertex-Cover:
 - Given an undirected graph $G=(V,E)$ and an integer k is there a subset W of V of size at most k such that every edge of G has at least one endpoint in W? (i.e. W covers all edges of G).

- Set-Cover:
 - Given a set U of n elements, a collection $S_1,...,S_m$ of subsets of U, and an integer k, does there exist a collection of at most k sets whose union is equal to U?

The Simple Reduction

- Transformation T maps $(G=(V,E),k)$ to $(U,S_1,...,S_m,k')$
 - $U\leftarrow E$
 - For each vertex $v \in V$ create a set S_v containing all edges that touch v
 - $k'\leftarrow k$

- Reduction T is clearly polynomial-time to compute

- We need to prove that the resulting algorithm gives the right answer!
Proof of Correctness

Two directions:
- If the answer to Vertex-Cover on \((G,k)\) is YES then the answer for Set-Cover on \(T(G,k)\) is YES
 - If a set \(W\) of \(k\) vertices covers all edges then the collection \(\{S_v \mid v \in W\}\) of \(k\) sets covers all of \(U\)
- If the answer to Set-Cover on \(T(G,k)\) is YES then the answer for Vertex-Cover on \((G,k)\) is YES
 - If a subcollection \(S_{v_1}, \ldots, S_{v_k}\) covers all of \(U\) then the set \(\{v_1, \ldots, v_k\}\) is a vertex cover in \(G\).

Reductions by Simple Equivalence

Show: Independent-Set \(\leq_p\) Clique

Independent-Set:
- Given a graph \(G=(V,E)\) and an integer \(k\), is there a subset \(U\) of \(V\) with \(|U| \geq k\) such that no two vertices in \(U\) are joined by an edge.

Clique:
- Given a graph \(G=(V,E)\) and an integer \(k\), is there a subset \(U\) of \(V\) with \(|U| \geq k\) such that every pair of vertices in \(U\) is joined by an edge.

Independent-Set \(\leq_p\) Clique

Show: Independent Set \(\leq_p\) Vertex-Cover

Vertex-Cover:
- Given an undirected graph \(G=(V,E)\) and an integer \(k\), is there a subset \(W\) of \(V\) of size at most \(k\) such that every edge of \(G\) has at least one endpoint in \(W\)? (i.e. \(W\) covers all edges of \(G\)).

Independent-Set:
- Given a graph \(G=(V,E)\) and an integer \(k\), is there a subset \(U\) of \(V\) with \(|U| \geq k\) such that no two vertices in \(U\) are joined by an edge.

Reduction Idea

Claim: In a graph \(G=(V,E)\), \(S\) is an independent set iff \(V-S\) is a vertex cover

Proof:
- \(\Rightarrow\) Let \(S\) be an independent set in \(G\)
 - Then \(S\) contains at most one endpoint of each edge of \(G\)
 - At least one endpoint must be in \(V-S\)
 - \(V-S\) is a vertex cover
- \(\Leftarrow\) Let \(W=V-S\) be a vertex cover of \(G\)
 - Then \(S\) does not contain both endpoints of any edge (else \(W\) would miss that edge)
 - \(S\) is an independent set

Reduction

- Map \((G,k)\) to \((G,n-k)\)
 - Previous lemma proves correctness
 - Clearly polynomial time
 - We also get that \(\text{Vertex-Cover} \leq_p \text{Independent Set}\)
Satisfiability

- Boolean variables $x_1,...,x_n$
 - taking values in $\{0,1\}$. $0=\text{false}$, $1=\text{true}$
- Literals
 - x_i or $\neg x_i$ for $i=1,...,n$
- Clause
 - a logical OR of one or more literals
 - e.g. $(x_1 \lor \neg x_3 \lor x_7 \lor x_{12})$
- CNF formula
 - a logical AND of a bunch of clauses

Satisfiability

- CNF formula example
 - $(x_1 \lor \neg x_3 \lor x_7 \lor x_{12}) \land (x_2 \lor \neg x_4 \lor x_7 \lor x_3)$
- If there is some assignment of 0’s and 1’s to the variables that makes it true then we say the formula is satisfiable

Common property of these problems

- There is a special piece of information, a short certificate or proof, that allows you to efficiently verify (in polynomial-time) that the YES answer is correct. This certificate might be very hard to find

- e.g. DecisionTSP: the tour itself, Independent-Set, Clique: the set U Satisfiability: an assignment that makes F true.

The complexity class NP

NP consists of all decision problems where

- You can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) certificate

And

- No certificate can fool your polynomial time verifier into saying YES for a NO instance

More Precise Definition of NP

- A decision problem is in NP iff there is a polynomial time procedure verify(\ldots), and an integer k such that
 - for every input x to the problem that is a YES instance there is a certificate t with $|t| \leq |x|^k$ such that verify(x,t) = YES and
 - for every input x to the problem that is a NO instance there does not exist a certificate t with $|t| \leq |x|^k$ such that verify(x,t) = YES

Example: CLIQUE is in NP

procedure verify(x,t)
 if
 x is a well-formed representation of a graph $G=(V,E)$ and an integer k,
 and
 t is a well-formed representation of a vertex subset U of V of size k,
 and
 U is a clique in G,
 then output "YES"
 else output "I'm unconvinced"
Is it correct?

For every \(x = (G,k) \) such that \(G \) contains a \(k \)-clique, there is a certificate \(t \) that will cause \(\text{verify}(x,t) \) to say \(\text{YES} \).

- \(t \) = a list of the vertices in such a \(k \)-clique

And no certificate can fool \(\text{verify}(x,\cdot) \) into saying \(\text{YES} \) if either

- \(x \) isn't well-formed (the uninteresting case)
- \(x = (G,k) \) but \(G \) does not have any cliques of size \(k \) (the interesting case)

Keys to showing that a problem is in NP

- What's the output? (must be YES/NO)
- What must the input look like?
- Which inputs need a \(\text{YES} \) answer?
 - Call such inputs \(\text{YES} \) inputs/\(\text{YES} \) instances
- For every given \(\text{YES} \) input, is there a certificate that would help?
 - \(\text{OK if some inputs need no certificate} \)
- For any given \(\text{NO} \) input, is there a fake certificate that would trick you?

Solving NP problems without hints

- The only obvious algorithm for most of these problems is brute force:
 - try all possible certificates and check each one to see if it works.
 - Exponential time:
 - \(2^n \) truth assignments for \(n \) variables
 - \(n! \) possible TSP tours of \(n \) vertices
 - \(\binom{n}{k} \) possible \(k \) element subsets of \(n \) vertices
 - etc.

What We Know

- Nobody knows if all problems in \(\text{NP} \) can be done in polynomial time, i.e. does \(\text{P} = \text{NP} \)?
 - one of the most important open questions in all of science.
 - huge practical implications
- Every problem in \(\text{P} \) is in \(\text{NP} \)
 - one doesn't even need a certificate for problems in \(\text{P} \) so just ignore any hint you are given
- Every problem in \(\text{NP} \) is in exponential time

P and NP

NP-hardness & NP-completeness

- Some problems in \(\text{NP} \) seem hard
 - people have looked for efficient algorithms for them for hundreds of years without success
- However
 - nobody knows how to prove that they are really hard to solve, i.e. \(\text{P} \neq \text{NP} \)
Problems in NP that seem hard

- Some Examples in NP
 - Satisfiability
 - Independent-Set
 - Clique
 - Vertex Cover
- All hard to solve; certificates seem to help on all
- Fast solution to any gives fast solution to all!

NP-hardness & NP-completeness

- Alternative approach to proving problems not in P
 - show that they are at least as hard as any problem in NP
- Rough definition:
 - A problem is NP-hard iff it is at least as hard as any problem in NP
 - A problem is NP-complete iff it is both
 - NP-hard
 - in NP

P and NP

- NP-hard
- NP-complete

Cook's Theorem

- Theorem (Cook 1971): Satisfiability is NP-complete
- Recall
 - CNF formula
 - e.g. \((x_1 \lor \neg x_3 \lor x_7 \lor x_{12}) \land (x_2 \lor \neg x_4 \lor x_8 \lor x_9)\)
 - If there is some assignment of 0's and 1's to the variables that makes it true then we say the formula is satisfiable
- Satisfiability: Given a CNF formula \(F\), is it satisfiable?

Implications of Cook's Theorem?

- There is at least one interesting super-hard problem in NP
- Is that such a big deal?
 - YES!
 - There are lots of other problems that can be solved if we had a polynomial-time algorithm for Satisfiability
 - Many of these problems are exactly as hard as Satisfiability
A useful property of polynomial-time reductions

Theorem: If \(L \leq_{p} R \) and \(R \leq_{p} S \) then \(L \leq_{p} S \)

- Proof idea: (Using \(<_{p} <_{p} \))
 - Compose the reduction \(T \) from \(L \) to \(R \) with the reduction \(T' \) from \(R \) to \(S \) to get a new reduction \(T''(x) = T(T'(x)) \) from \(L \) to \(S \).

The general case is similar and uses the fact that the composition of two polynomials is also a polynomial.

Cook’s Theorem & Implications

- Theorem (Cook 1971): Satisfiability is NP-complete
 - For proof see CSE 431
- Corollary: \(R \) is NP-hard \(\iff \) Satisfiability \(\leq_{p} R \)
 - (or \(Q \leq_{p} R \) for any NP-complete problem \(Q \))

Proof:
- If \(R \) is NP-hard then every problem in NP polynomial-time reduces to \(R \), in particular Satisfiability does since it is in NP.
- For any problem \(L \) in NP, \(L \leq_{p} \) Satisfiability and so if Satisfiability \(\leq_{p} R \) we have \(L \leq_{p} R \).
- Therefore \(R \) is NP-hard if Satisfiability \(\leq_{p} R \).

Another NP-complete problem: Satisfiability \(\leq_{p} \) Independent-Set

A Tricky Reduction:
- mapping CNF formula \(F \) to a pair \(<G,k>\)
- Let \(m \) be the number of clauses of \(F \)
- Create a vertex in \(G \) for each literal in \(F \)
- Join two vertices \(u, v \) in \(G \) by an edge iff \(u \) and \(v \) correspond to literals in the same clause of \(F \), (green edges) or \(u \) and \(v \) correspond to literals \(x \) and \(\neg x \) (or vice versa) for some variable \(x \). (red edges).
- Set \(k = m \)
- Clearly polynomial-time

Satisfiability \(\leq_{p} \) Independent-Set

Correctness:
- If \(F \) is satisfiable then there is some assignment that satisfies at least one literal in each clause.
- Consider the set \(U \) in \(G \) corresponding to the first satisfied literal in each clause.
 - \(|U| = m \)
 - Since \(U \) has only one vertex per clause, no two vertices in \(U \) are joined by green edges.
 - Since a truth assignment never satisfies both \(x \) and \(\neg x \), \(U \) doesn’t contain vertices labeled both \(x \) and \(\neg x \) and so no vertices in \(U \) are joined by red edges.
 - Therefore \(G \) has an independent set, \(U \), of size at least \(m \).
- Therefore \((G,m) \) is a YES for independent set.

Satisfiability \(\leq_{p} \) Independent-Set

Given assignment \(x_1 = x_2 = x_3 = x_4 = 1 \), \(U \) is as circled
Satisfiability \(\leq^p\) Independent-Set

- Correctness continued:
 - If \((G, m)\) is a YES for Independent-Set then there is a set \(U\) of \(m\) vertices in \(G\) containing no edge.
 - Therefore \(U\) has precisely one vertex per clause because of the green edges in \(G\).
 - Because of the red edges in \(G\), \(U\) does not contain vertices labeled both \(x\) and \(\overline{x}\).

- By construction, \(A\) satisfies \(F\).
- Therefore \(F\) is a YES for Satisfiability.

Independent-Set is NP-complete

- We just showed that Independent-Set is NP-hard and we already knew Independent-Set is in NP.
- Corollary: Clique is NP-complete
 - We showed already that Independent-Set \(\leq_p\) Clique and Clique is in NP.

Is NP as bad as it gets?

- NO! NP-complete problems are frequently encountered, but there's worse:
 - Some problems provably require exponential time.
 - Ex: Does \(P\) halt on \(x\) in \(2^{n^2}\) steps?
 - Some require \(2^n\), \(2^{n^2}\), \(2^{2^n}\), ... steps
 - And of course, some are just plain uncomputable

Problems we already know are NP-complete

- Satisfiability
- Independent-Set
- Clique
- Vertex-Cover

- There are 1000's of practical problems that are NP-complete, e.g. scheduling, optimal VLSI layout etc.

Steps to Proving Problem R is NP-complete

- Show R is NP-hard:
 - State: Reduction is from NP-hard Problem L
 - Show what the map \(T\) is
 - Argue that \(T\) is polynomial time
 - Argue correctness: two directions Yes for L implies Yes for R and vice versa.
- Show R is in NP
 - State what hint is and why it works
 - Argue that it is polynomial-time to check.
A particularly useful problem for proving NP-completeness

- 3-SAT: Given a CNF formula F having precisely 3 variables per clause (i.e., in 3-CNF), is F satisfiable?

- Claim: 3-SAT is NP-complete

- Proof:
 - 3-SAT is NP
 - Certificate is a satisfying assignment
 - Just like Satisfiability it is polynomial-time to check the certificate

Satisfiability \leq_p 3-SAT

- Goal:
 - An assignment a to the original variables makes clause C true in F if:
 - there is an assignment to the extra variables that together with the assignment a will make all new clauses corresponding to C true.
 - Define the reduction clause-by-clause
 - We'll use variable names z_i to denote the extra variables related to a single clause C to simplify notation
 - In reality, two different original clauses will not share z_i

- Reduction:
 - Map CNF formula F to another CNF formula G that has precisely 3 variables per clause.
 - G has one or more clauses for each clause of F
 - G will have extra variables that don't appear in F
 - For each clause C of F there will be a different set of variables that are used only in the clauses of G that correspond to C
 - Use two new variables (z_1, z_2) and put two clauses in G that correspond to C
 - If original C is true under assignment a then both new clauses will be true under a
 - If new clauses are both true under some assignment b then the value of a doesn't help in one of the two clauses so C must be true under b

Satisfiability \leq_p 3-SAT

- If C has 1 variable: e.g. $C=x_i$
 - Use two new variables z_1, z_2 and put 4 new clauses in G
 - $(x_i \lor \neg z_1 \lor \neg z_2) \land (x_i \lor \neg z_1 \lor z_2) \land (x_i \lor z_1 \lor \neg z_2) \land (x_i \lor z_1 \lor z_2)$
 - If original C is true under assignment a then all new clauses will be true under a
 - If new clauses are all true under some assignment b then the values of z_1 and z_2 don’t help in one of the 4 clauses so C must be true under b

Satisfiability \leq_p 3-SAT

- If C has $k \geq 4$ variables: e.g. $C=(x_1 \lor \ldots \lor x_k)$
 - Use $k-3$ new variables z_1, \ldots, z_{k-2} and put $k-2$ new clauses in G
 - $(x_i \lor x_j \lor z_1) \land (\neg z_1 \lor x_j \lor z_2) \land (\neg z_2 \lor x_j \lor z_3) \land \ldots \land (\neg z_{k-3} \lor x_j \lor z_{k-2}) \land (\neg z_{k-2} \lor x_j \lor x_{k-1})$
 - If original C is true under assignment a then some x_i is true for $1 \leq i \leq k$. By setting z_j true for all $j > i$, we can extend a to make all new clauses true.
 - If new clauses are all true under some assignment b then some x_i must be true for $1 \leq i \leq k$ because $z_j \lor (\neg z_j \lor z_{j+1}) \land \ldots \land (\neg z_{k-2} \lor z_{k-1}) \land \neg z_{k-1}$ is not satisfiable
Graph Colorability

- **Defn:** Given a graph $G=(V,E)$, and an integer k, a **k-coloring** of G is an assignment of up to k different colors to the vertices of G so that the endpoints of each edge have different colors.

- **3-Color:** Given a graph $G=(V,E)$, does G have a 3-coloring?

- **Claim:** 3-Color is NP-complete

- **Proof:** 3-Color is in NP:
 - Hint is an assignment of red, green, blue to the vertices of G
 - Easy to check that each edge is colored correctly

3-SAT $\leq P 3$-Color

- **Reduction:**
 - We want to map a 3-CNF formula F to a graph G so that G is 3-colorable iff F is satisfiable

- **Base Triangle**

- **Variable Part:**
 - in 3-coloring, variable colors correspond to some truth assignment (same color as T or F)

- **Clause Part:**
 - Add one 6 vertex gadget per clause connecting its ‘outer vertices’ to the literals in the clause

- **Any truth assignment satisfying the formula can be extended to a 3-coloring of the graph**
3-SAT \leq_p 3-Color

Any 3-coloring of the graph colors each gadget triangle using each color

3-SAT \leq_p 3-Color

Any 3-coloring of the graph has an F opposite the O color in the triangle of each gadget

3-SAT \leq_p 3-Color

Any 3-coloring of the graph has T at the other end of the blue edge connected to the F

3-SAT \leq_p 3-Color

Any 3-coloring of the graph yields a satisfying assignment to the formula

More NP-completeness

- Subset-Sum problem
 - Given n integers $w_1, ..., w_n$ and integer W
 - Is there a subset of the n input integers that adds up to exactly W?
 - $O(nW)$ solution from dynamic programming but if W and each w_i can be n bits long then this is exponential time

- 3-SAT \leq_p Subset-Sum
 - Given a 3-CNF formula with m clauses and n variables
 - Will create $2m+2n$ numbers that are $m+n$ digits long
 - Two numbers for each variable x_i
 - t_i and f_i (corresponding to x_i being true or false)
 - Two extra numbers for each clause
 - u_j and v_j (filler variables to handle number of false literals in clause C_j)
3-SAT \leq_p Subset-Sum

\[
C_{\phi}(x_1, \ldots, x_n, x_j)
\]

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
<td>1</td>
</tr>
<tr>
<td>t_4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>\ldots</td>
<td>0</td>
</tr>
<tr>
<td>\ldots</td>
</tr>
<tr>
<td>u_jv_i & 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>u_jv_k & 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>\ldots</td>
</tr>
<tr>
<td>W & 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>\ldots</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>\ldots</td>
<td>3</td>
</tr>
</tbody>
</table>

P vs NP

Theory
- **P = NP?**
- Open Problem!
- Bet against it

Practice
- Many interesting, useful, natural, well-studied problems known to be NP-complete
- With rare exceptions, no one routinely succeeds in finding exact solutions to large, arbitrary instances