CSE 421: Introduction to Algorithms

Graphs & Graph Traversal

Winter 2003
Paul Beame

Undirected Graph \(G = (V,E) \)

Directed Graph \(G = (V,E) \)

Representing Graph \(G=(V,E) \)

- **n** vertices, **m** edges
- Vertex set \(V = \{v_1, \ldots, v_n\} \)
- Adjacency Matrix \(A \)
 - \(A[i,j] = 1 \) iff \((v_i,v_j) \in E \)
 - Space is \(n^2 \) bits
- Advantages:
 - \(O(1) \) test for presence or absence of edges.
 - Compact in packed binary form for large \(m \)
- Disadvantages:
 - Inefficient for sparse graphs

Representing Graph \(G=(V,E) \)

- **n** vertices, **m** edges
- Adjacency List:
 - \(O(n+m) \) words
 - \(O(\log n) \) bits each
- Advantages:
 - Compact for sparse graphs
Graph Traversal

- Learn the basic structure of a graph
- Walk from a fixed starting vertex s to all vertices reachable from s

- Three states of vertices
 - unvisited
 - visited
 - fully-explored

Generic Graph Traversal Algorithm

Find: set R of vertices reachable from $s \in V$

Reachable(s):

1. $R \leftarrow \{s\}$
2. While there is a $(u,v) \in E$ where $u \in R$ and $v \notin R$
 - Add v to R

Generic Traversal Always Works

- **Claim**: At termination R is the set of nodes reachable from s
- **Proof**
 - \subseteq: For every node $v \in R$ there is a path from s to v
 - \supseteq: Suppose there is a node $v \notin R$ reachable from s via a path P
 - Take first node v on P such that $v \notin R$
 - Predecessor u of v in P satisfies
 - $u \in R$
 - $(u,v) \in E$
 - But this contradicts the fact that the algorithm exited the while loop.

Breadth-First Search

- Completely explore the vertices in order of their distance from s
- Naturally implemented using a queue

BFS(s)

- Global initialization: mark all vertices "unvisited" and $R \leftarrow \{s\}$; layer $L_0 \leftarrow \{s\}$
- While L_i not empty
 - $L_{i+1} \leftarrow \{s\}$
 - For each $u \in L_i$
 - For each edge (u,v)
 - if (v is "unvisited")
 - mark v "visited"
 - Add v to set R and to layer L_{i+1}
 - mark u "fully-explored"
BFS analysis

- Each edge is explored once from each end-point (at most)
- Each vertex is discovered by following a different edge
- Total cost $O(m)$ where m = # of edges

Properties of BFS

- On undirected graphs
 - All non-tree edges join vertices on the same or adjacent layers
- Suppose not
 - Then there would be vertices (x, y) such that $x \in L_i$ and $y \in L_j$ and $i < j - 1$
 - Then, when vertices incident to x are considered in BFS y would be added to L_{i+1} and not to L_j

Properties of BFS(v)

- BFS(s) visits x if and only if there is a path in G from s to x.
- Edges followed to undiscovered vertices define a tree
 - "breadth first spanning tree" of G
- Layer i in this tree, L_i
 - those vertices u such that the shortest path in G from the root s is of length i.
- On undirected graphs
 - All non-tree edges join vertices on the same or adjacent layers

BFS Application: Shortest Paths

Tree gives shortest paths from start vertex

Can label by distances from start
Graph Search Application: Connected Components

- Want to answer questions of the form:
 - Given: vertices \(u \) and \(v \) in \(G \)
 - Is there a path from \(u \) to \(v \)?
- Idea: create array \(A \) such that
 - \(A[u] = \) smallest numbered vertex that is connected to \(u \)

Q: Why not create an array \(\text{Path}(u,v) \)?

Depth-First Search

- Follow the first path you find as far as you can go
- Back up to last unexplored edge when you reach a dead end, then go as far you can
- Naturally implemented using recursive calls or a stack

DFS(u) – Recursive version

Global Initialization: mark all vertices "unvisited"

DFS(u):
- mark \(u \) "visited" and add \(u \) to \(R \)
- for each edge \((u,v) \)
 - if \(v \) is "unvisited"
 - DFS(v)
 - end for
- mark \(u \) "fully-explored"
DFS(u)

DFS(u)

DFS(u)

DFS(u)

DFS(u)

DFS(u)
DFS(u)

1 2

3 4

5 6

7 8

9 10

11 12

13
Properties of DFS(s)

- Like BFS(s):
 - DFS(s) visits x if and only if there is a path in G from s to x
 - Edges into undiscovered vertices define a tree called "depth first spanning tree" of G

- Unlike the BFS tree:
 - The DFS spanning tree isn’t minimum depth
 - Its levels don’t reflect min distance from the root
 - Non-tree edges never join vertices on the same or adjacent levels

BUT...

Non-tree edges

- All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree

- No cross edges!

No cross edges in DFS on undirected graphs

- Claim: During DFS(x) every vertex marked visited is a descendant of x in the DFS tree T
- Claim: For every x,y in the DFS tree T, if (x,y) is an edge not in T then one of x or y is an ancestor of the other in T
- Proof:
 - One of x or y is visited first, suppose WLOG that x is visited first and therefore DFS(x) was called before DFS(y)
 - During DFS(x), the edge (x,y) is examined
 - Since (x,y) is not an edge of T, y was visited when the edge (x,y) was examined during DFS(x)
 - Therefore y was visited during the call to DFS(x) so y is a descendant of x.

Applications of Graph Traversal: Bipartiteness Testing

- Easy: A graph G is not bipartite if it contains an odd length cycle
- WLOG: G is connected
- Otherwise run on each component
- Simple idea: start coloring nodes starting at a given node s
 - Color s red
 - Color all neighbors of s blue
 - Color all their neighbors red
 - If you ever hit a node that was already colored the same color as you want to color it, ignore it
 - The opposite color, output error

BFS gives Bipartiteness

- Run BFS assigning all vertices from layer L_i the color $i \mod 2$
 - i.e. red if they are in an even layer, blue if in an odd layer
- If there is an edge joining two vertices from the same layer then output "Not Bipartite"

Why does it work?

- u and v have a common ancestor
- Cycle length $2(j-i)+1$
Application: Cut Points

- A node in an undirected graph is an **cut point** iff removing it disconnects the graph.
- Cut points represent vulnerabilities in a network – single points whose failure would split the network into 2 or more disconnected components.

Cut Points from DFS

- Non-tree edges eliminate cut points.
- Root node r is cut point \Rightarrow it has more than one child in the DFS tree T.
 - If r has only one child in T, call it u.
 - Every node in T is reachable from u so removing r leaves T connected.
 - r has more than one child, the fact that there are no cross edges means removing r disconnects the graph.
- Leaf nodes are never cut points, more generally…
- Non-root node u is a cut point \Rightarrow
 - There is some child v of u that does not have a non-tree edge leading from the subtree rooted at v to any node in the tree.

Understanding cut points

- **Notation:**
 - For nodes u and v, write $u \leq v$ if u is visited before v during a given DFS.
 - "u is earlier than v in the DFS".
 - For a node u, define $\text{earliest}(u)$ to be the earliest node that is adjacent to some node in the subtree of the DFS tree rooted at u.
- **Characterization:**
 - Non-root node u is a cut point \iff there is some child v of u such that $u \leq \text{earliest}(v)$.

Proving characterization

- Suppose there is some child v of u such that $u \leq \text{earliest}(v)$.
 - Let X be set of nodes in subtree rooted at v.
 - Only tree edge out of X goes to u.
 - Any non-tree edges out of X must go up the tree but no earlier than u so can at best go to u.
 - \therefore Removing u disconnects X from the rest of the graph.
 - \therefore u is a cut point.
Proving characterization

Suppose every child v of u has $\text{earliest}(v) < u$
- Let G' be $G \setminus \{u\}$
- **Claim:** u is not a cut point, i.e., G' is connected
- We will find paths in G' from r to each node w of G'
- If $w \neq u$ is not in subtree rooted at u then the original path is still there
- If $w \neq u$ is in the subtree rooted at u then w lies in some subtree, call it T_v, below some child v of u
 - Since $\text{earliest}(v) < u$ there is a path from r to $\text{earliest}(v)$ and from $\text{earliest}(v)$ to some node of T_v, and therefore to w

Implementing Cut Points from DFS

- Number each node v, $\text{dfsnum}(v)$ to get order
- For each vertex v compute $\text{earliest}(v)$
 - the smallest number of a node pointed at by any descendant of v in the DFS tree (including v itself)
- Can compute $\text{earliest}(v)$ for every v during DFS at minimal extra cost
- Non-root node u is a cut point \iff for some child v of u
 - $\text{dfsnum}(u) \leq \text{earliest}(v)$
 - Easy to compute and check during DFS

DFS(v)

- **Global Initialization:**
 - mark all vertices u "unvisited" via $\text{dfsnum}(u) \leftarrow -1$
 - $\text{dfscounter} \leftarrow 0$
- **DFS(v):**
 - $\text{dfscounter} \leftarrow \text{dfscounter} + 1$
 - $\text{dfsnum}(v) \leftarrow \text{dfscounter}$ // mark v "visited"
 - for each edge (v, x)
 - if ($\text{dfsnum}(x) = -1$) // x previously unvisited
 - add edge (v, x) to DFStree
 - $\text{DFS}(x)$
 - $\text{earliest}(v) \leftarrow \text{dfsnum}(v)$ // initialization

DFS(v) for Finding Cut Points

- **Global initialization:** $\text{dfsnum}(u) \leftarrow 1$ for all u, $\text{dfscounter} \leftarrow 0$
- **DFS(v):**
 - $\text{dfscounter} \leftarrow \text{dfscounter} + 1$
 - $\text{dfsnum}(v) \leftarrow \text{dfscounter}$
 - $\text{earliest}(v) \leftarrow \text{dfsnum}(v)$
 - for each edge (v, x)
 - if ($\text{dfsnum}(x) = -1$) // x is unvisited
 - $\text{DFS}(x)$
 - if ($\text{earliest}(x) \geq \text{dfsnum}(v)$)
 - print "v is a cut point, separating x"
 - $\text{earliest}(v) \leftarrow \min(\text{earliest}(v), \text{earliest}(x))$
 - else if (x is not v's parent)
 - $\text{earliest}(v) \leftarrow \min(\text{earliest}(v), \text{dfsnum}(x))$

- Check that (v, x) is a non-tree edge

Cut Points

DFS #	Earliest
1 | 1
2 | 2
3 | 3
4 | 4
5 | 5
6 | 6
7 | 7
8 | 8
9 | 9
10 | 10
11 | 11
12 | 12
13 | 13

DFS #	Early	Cut
1 | 1 | Y
2 | 2 | Y
3 | 3 | Y
4 | 4 | Y
5 | 5 | Y
6 | 6 | Y
7 | 7 | Y
8 | 8 | Y
9 | 9 | Y
10 | 10 | Y
11 | 11 | Y
12 | 12 | Y
13 | 13 | Y

Note: need a separate check for the root
Properties of Directed DFS
- Before DFS(s) returns, it visits all previously unvisited vertices reachable via directed paths from s.
- Every cycle contains a back edge in the DFS tree.

Directed Acyclic Graphs
- A directed graph \(G=(V,E) \) is acyclic if it has no directed cycles.
- Terminology: A directed acyclic graph is also called a DAG.

Topological Sort
- **Given**: a directed acyclic graph (DAG) \(G=(V,E) \)
- **Output**: numbering of the vertices of \(G \) with distinct numbers from 1 to \(n \) so edges only go from lower number to higher numbered vertices.
- **Applications**
 - nodes represent tasks
 - edges represent precedence between tasks
 - topological sort gives a sequential schedule for solving them
In-degree 0 vertices
- Every DAG has a vertex of in-degree 0
- **Proof**: By contradiction
 - Suppose every vertex has some incoming edge
 - Consider following procedure:
 - while (true) do
 - \(v \leftarrow \) some predecessor of \(v \)
 - After \(n+1 \) steps where \(n = |V| \) there will be a repeated vertex
 - This yields a cycle, contradicting that it is a DAG

Topological Sort
- Can do using DFS
- Alternative simpler idea:
 - Any vertex of in-degree 0 can be given number 1 to start
 - Remove it from the graph and then give a vertex of in-degree 0 number 2, etc.
Implementing Topological Sort

- Go through all edges, computing in-degree for each vertex $O(m+n)$
- Maintain a queue (or stack) of vertices of in-degree 0
- Remove any vertex in queue and number it
- When a vertex is removed, decrease in-degree of each of its neighbors by 1 and add them to the queue if their degree drops to 0
- Total cost $O(m+n)$