Bipartite Matching

- Given: A bipartite graph \(G=(V,E) \)
 - \(M \subseteq E \) is a matching in \(G \) iff no two edges in \(M \) share a vertex

- Goal: Find a matching \(M \) in \(G \) of maximum possible size

Bipartite matching as a special case of flow

The Network Flow Problem

- How much stuff can flow from \(s \) to \(t \)?
Net Flow: Formal Definition

Given:
A digraph \(G = (V, E) \)
Two vertices \(s, t \) in \(V \) (source & sink)
A capacity \(c(u, v) \geq 0 \) for each \((u, v) \in E \)
and \(c(u, v) = 0 \) for all non-edges \((u, v)\)

Find:
A flow function \(f: E \rightarrow \mathbb{R} \)
st. for all \(u, v \):
\[n_0 \leq f(u, v) \leq c(u, v) \]
[Capacity Constraint]
\[f(u, v) = f(v, u) \]
[Flow Conservation]
Maximizing total flow \(\nu(f) = f_{\text{out}}(s) \)

Notation:
\[f_{\text{in}}(v) = \sum_{u: (u, v) \in E} f(u, v) \]
\[f_{\text{out}}(v) = \sum_{w: (v, w) \in E} f(v, w) \]

Example: A Flow Function

While there is an \(s \rightarrow t \) path in \(G \)
Pick such a path, \(p \)
Find \(c \), the min capacity of any edge in \(p \)
Subtract \(c \) from all capacities on \(p \)
Delete edges of capacity \(0 \)
This does NOT always find a max flow:

If pick \(s \rightarrow b \rightarrow a \rightarrow t \) first, flow stuck at 2.
But flow 3 possible.

A Brief History of Flow

<table>
<thead>
<tr>
<th>Year</th>
<th>Algorithm</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1935</td>
<td>Ford-Fulkerson</td>
<td>Gomory</td>
</tr>
<tr>
<td>1955</td>
<td>Edmonds & Karp</td>
<td>Gomory</td>
</tr>
<tr>
<td>1957</td>
<td>Dinitz</td>
<td>Gomory</td>
</tr>
<tr>
<td>1970</td>
<td>Dinic</td>
<td>Gomory</td>
</tr>
<tr>
<td>1982</td>
<td>Goldberg & Tarjan</td>
<td>Gomory</td>
</tr>
<tr>
<td>1985</td>
<td>Goldberg & Tarjan</td>
<td>Gomory</td>
</tr>
<tr>
<td>1987</td>
<td>Goldberg & Tarjan</td>
<td>Gomory</td>
</tr>
<tr>
<td>1991</td>
<td>Goldberg & Tarjan</td>
<td>Gomory</td>
</tr>
<tr>
<td>1998</td>
<td>Goldberg & Rao</td>
<td>Gomory</td>
</tr>
</tbody>
</table>

Max Flow via a Greedy Alg?

Greed Revisited:
Residual Graph & Augmenting Path
Greed Revisited: An Augmenting Path

Residual Capacity

- The residual capacity (w.r.t. f) of (u,v) is $c_P(u,v) = c(u,v) - f(u,v)$ if $f(u,v) \leq c(u,v)$ and $c_P(u,v) = f(v,u)$ if $f(v,u) > 0$

- e.g. $c_P(s,b) = 7$; $c_P(a,x) = 1$; $c_P(x,a) = 3$

Residual Graph & Augmenting Paths

- The residual graph (w.r.t. f) is the graph $G_f = (V, E_f)$, where $E_f = \{ (u,v) \mid c_P(u,v) > 0 \}$

- Two kinds of edges
 - Forward edges
 - $f(u,v) < c(u,v)$ so $c_P(u,v) = c(u,v) - f(u,v) > 0$
 - Backward edges
 - $f(u,v) > 0$ so $c_P(v,u) > f(v,u) - f(u,v) > 0$

- An augmenting path (w.r.t. f) is a simple $s \rightarrow t$ path in G_f.

A Residual Network

An Augmenting Path

Augmenting A Flow

$$
\text{augment}(f,P) = \min_{(u,v) \in P} c_P(u,v) \quad \text{"bottleneck}(P)"
$$

for each $e \in P$

- if e is a forward edge then
 - increase $f(e)$ by c_P
- else (e is a backward edge)
 - decrease $f(e)$ by c_P

endif

endfor

return(f)
Augmenting A Flow

Claim 6.1
If \(G_f \) has an augmenting path \(P \), then the function \(f' = \text{augment}(f, P) \) is a legal flow.

Proof:
- \(f' \) and \(f \) differ only on the edges of \(P \) so only need to consider such edges \((u,v)\)

Proof of Claim 6.1
- If \((u,v)\) is a forward edge then
 \[
 f'(u,v) = f(u,v) + c_P \leq f(u,v) + c(u,v) = f(u,v) + c(u,v) - f(u,v) = f(u,v) + c(u,v) - f(u,v) = c(u,v)
 \]
- If \((u,v)\) is a backward edge then \(f \) and \(f' \) differ on flow along \((v,u)\) instead of \((u,v)\)
 \[
 f'(v,u) = f(v,u) - c_P \geq f(v,u) - c(u,v) = f(v,u) - f(v,u) = 0
 \]
- Other conditions like flow conservation still met

Ford-Fulkerson Method
Start with \(f = 0 \) for every edge
While \(G_f \) has an augmenting path, augment

Questions:
- Does it halt?
- Does it find a maximum flow?
- How fast?

Observations about Ford-Fulkerson Algorithm
- At every stage the capacities and flow values are always integers (if they start that way)
- The flow value \(v'(f') = v(f) + c_P \geq v(f) \) for \(f' = \text{augment}(f, P) \)
 - Since edges of residual capacity 0 do not appear in the residual graph
- Let \(C = \sum_{(s,u) \in E} c(s,u) \)
 - \(v(f) \leq C \)
 - F-F does at most \(C \) rounds of augmentation since flows are integers and increase by at least 1 per step

Running Time of Ford-Fulkerson
- For \(f = 0 \), \(G_f = G \)
- Finding an augmenting path in \(G_f \) is graph search \(O(n+m) = O(m) \) time
- Augmenting and updating \(G_f \) is \(O(n) \) time
- Total \(O(mC) \) time
- Does is find a maximum flow?
 - Need to show that for every flow \(f \) that isn't maximum \(G_f \) contains an \(s-t \)-path
Corollary (1)

We know by Claims 6.6 & 6.8 that any flow f' satisfies $\nu(f') \leq c(S,T)$ and we know that F-F runs for finite time until it finds a flow f satisfying conditions of Claim 6.10.

Therefore by 6.10 for any flow f, $\nu(f) \geq c(S,T)$.

Corollary (2)

For any graph G, the value $\nu(f)$ of a maximum flow f is $\nu(f) = c(S,T)$ for any s-t cut $S \subseteq V$.

Max Flow / Min Cut Theorem

Claim 6.10 For any flow f, if G has no augmenting path then there is some s-t cut (S,T) such that $\nu(f) = c(S,T)$ (proof next slide).

We know by Claims 6.6 & 6.8 that any flow f' satisfies $\nu(f') \leq c(S,T)$ and we know that F-F runs for finite time until it finds a flow f satisfying conditions of Claim 6.10.

Therefore by 6.10 for any flow f, $\nu(f) \geq c(S,T)$.

Corollary (1) F-F computes a maximum flow in G.

(2) For any graph G, the value $\nu(f)$ of a maximum flow f is $\nu(f) = c(S,T)$ for any s-t cut $S \subseteq V$.
Flow Integrality Theorem

If all capacities are integers
- The max flow has an integer value
- Ford-Fulkerson method finds a max flow in which \(f(u,v) \) is an integer for all edges \((u,v)\)

\[
\begin{array}{c}
\text{0.5/1} \\
\text{0.5/1} \\
\text{0.5/1} \\
\end{array}
\]

Claim 6.10

Let \(S = \{ u \mid \exists \text{ a path in } G_f \text{ from } s \text{ to } u \} \)

\[
T = V \setminus S; \ s \in S, \ t \in T
\]

For any \((u,v)\) in \(S \times T \), \(\exists \) an path in \(G_f \) from \(s \) to \(u \), but not to \(v \).

\[
\therefore (u,v) \text{ has 0 residual capacity:} \\
(u,v) \in E \Rightarrow \text{saturated} \ \ f(u,v) = c(u,v) \\
(v,u) \in E \Rightarrow \text{no flow} \ \ f(v,u) = 0
\]

This is true for every edge crossing the cut, i.e.

\[
f^f(S) = \sum_{v \in T} f(u,v) = \sum_{u \in T} c(u,v) = c(S,T) \text{ and } f^f(S) = 0 \text{ so } \\
\forall (f) = f^f(S) - f^f(T) = c(S,T)
\]

Corollaries & Facts

- If Ford-Fulkerson terminates, then it’s found a max flow.
- It will terminate if \(c(e) \) integer or rational (but may not if they’re irrational).
- However, may take exponential time, even with integer capacities:

\[
\begin{array}{c}
\text{c = 10^9, say}
\end{array}
\]

Bipartite matching as a special case of flow

Integer flows implies each flow is just a subset of the edges
Therefore flow corresponds to a matching
\(O(mC)=O(nm)\) running time

Capacity-scaling algorithm

- General idea:
 - Choose augmenting paths \(P \) with ‘large’ capacity \(c_P \)
 - Can augment flows along a path \(P \) by any amount \(b \leq c_P \)
 - Ford-Fulkerson still works
 - Get a flow that is maximum for the high-order bits first and then add more bits later
Capacity Scaling

Capacity on each edge is at most 1

Capacity Scaling Bit 1

Residual capacity across min cut is at most 1

O(nm) time

Capacity Scaling Bit 2

Residual capacity across min cut is at most m

⇒ O(m) augmentations

Capacity Scaling Bit 3

Residual capacity across min cut is at most m

⇒ O(m) augmentations
Capacity Scaling Bit 3

After $O(m)$ augmentations

Capacity Scaling Final

Capacity Scaling Min Cut

Total time for capacity scaling

- $\log_2 U$ rounds where U is largest capacity
- At most m augmentations per round
 - Let c_i be the capacities used in the ith round and f_i the maxflow found in the ith round
 - For any edge (u,v), $c_{i+1}(u,v) \leq 2c_i(u,v) + 1$
 - 1st round starts with flow $f = 2f_1$
 - Let (S, T) be a min cut from the ith round
 - $\nu(f_i) = c_i(S, T)$ so $\nu(f_i) = 2f_i$
 - Let (S, T) be a min cut from the ith round
 - $\nu(f_{i+1}) \leq c_{i+1}(S, T) \leq 2c_i(S, T) + m = \nu(f) + m$
 - $O(m)$ time per augmentation
 - Total time $O(m^2 \log U)$

Edmonds-Karp Algorithm

- Use a shortest augmenting path (via Breadth First Search in residual graph)
- Time: $O(n m^2)$

BFS/Shortest Path Lemmas

Distance from s in G_i is never reduced by:

- Deleting an edge
 - Proof: no new (hence no shorter) path created
- Adding an edge (u,v), provided v is nearer than u
 - Proof: BFS is unchanged, since v visited before (u,v) examined
Key Lemma

Let f be a flow, G_f the residual graph, and P a shortest augmenting path. Then no vertex is closer to s after augmentation along P.

Proof: Augmentation along P only deletes forward edges, or adds back edges that go to previous vertices along P.

Theorem

The Edmonds-Karp Algorithm performs $O(mn)$ flow augmentations.

Proof:
- Call (u,v) critical for augmenting path P if it’s closest to s having min residual capacity.
- It will disappear from G_f after augmenting along P.
- In order for (u,v) to be critical again the (u,v) edge must re-appear in G_f, but that will only happen when the distance to u has increased by 1.
- It won’t be critical again until farther from s so each edge critical at most n times.

Corollary

- Edmonds-Karp runs in $O(nm^2)$ time.

Project Selection

a.k.a. The Strip Mining Problem

- **Given**
 - a directed acyclic graph $G=(V,E)$ representing precedence constraints on tasks (a task points to its predecessors)
 - a profit value $p(v)$ associated with each task $v \in V$ (may be positive or negative)
- **Find**
 - a set $A \subseteq V$ of tasks that is closed under predecessors, i.e. if $(u,v) \in E$ and $u \in A$ then $v \in A$, that maximizes $\text{Profit}(A) = \sum_{v \in A} p(v)$

Extended Graph
For each vertex \(v \)
- If \(p(v) \geq 0 \), add \((s, v) \) edge with capacity \(p(v) \)
- If \(p(v) < 0 \), add \((v, t) \) edge with capacity \(-p(v) \)

Extended Graph \(G' \):

Want to arrange capacities on edges of \(G \) so that for minimum \(s-t \)-cut \((S, T)\) in \(G' \), the set \(A=S\{s\} \)
- satisfies precedence constraints
- has maximum possible profit in \(G \)

Cut capacity with \(S\{s\} \) is just \(C - \sum_{v \in A} p(v) \)
- \(\text{Profit}(A) \geq C \) for any set \(A \)
- To satisfy precedence constraints don’t want any original edges of \(G \) going forward across the minimum cut
- That would correspond to a task in \(A=S\{s\} \) that had a predecessor not in \(A-S\{s\} \)
- Set capacity of each of these edges to \(C+1 \)

The minimum cut has size at most \(C \)

Project Selection:

Claim
- Any \(s-t \)-cut \((S, T)\) in \(G' \) such that \(A=S\{s\} \) satisfies precedence constraints has capacity
 \[c(S, T) = C - \sum_{v \in A} p(v) = C - \text{Profit}(A) \]

Corollary
- A minimum cut \((S, T)\) in \(G' \) yields an optimal solution \(A=S\{s\} \) to the profit selection problem

Algorithm
- Compute maximum flow \(f \) in \(G' \), find the set \(S \) of nodes reachable from \(s \) in \(G' \), and return \(S\{s\} \)

Proof of Claim:

- \(A=S\{s\} \) satisfies precedence constraints
- No edge of \(G \) crosses forward out of \(A \) by our choice of capacities
- Only forward edges cut are of the form \((v, t)\) for \(v \in A \) or \((s, v)\) for \(v \in A \)
- The \((v, t)\) edges for \(v \in A \) contribute
 \[\sum_{v \in A} p(v) = \sum_{v \in S} p(v) = \text{Profit}(A) \]
- The \((s, v)\) edges for \(v \in A \) contribute
 \[\sum_{v \in A} p(v) = C - \sum_{v \in S} p(v) \]
- Therefore the total capacity of the cut is
 \[c(S, T) = C - \sum_{v \in A} p(v) = C - \text{Profit}(A) \]