What to do if the problem you want to solve is NP-hard

- You might have phrased your problem too generally
 - e.g., in practice, the graphs that actually arise are far from arbitrary
 - maybe they have some special characteristic that allows you to solve the problem in your special case
 - for example the Independent-Set problem is easy on "interval graphs"
 - Exactly the case for interval scheduling!
 - search the literature to see if special cases already solved

Try to find an approximation algorithm

- Maybe you can't get the size of the best Vertex Cover but you can find one within a factor of 2 of the best
 - Given graph G=(V,E), start with an empty cover
 - While there are still edges in E left
 - Choose an edge e={u,v} in E and add both u and v to the cover
 - Remove all edges from E that touch either u or v.
 - Edges chosen don't share any vertices so optimal cover size must be at least # of edges chosen

Polynomial-time approximation algorithms for NP-hard problems can sometimes be ruled out unless P=NP

- E.g. Coloring Problem: Given a graph G=(V,E) find the smallest k such that G has a k-coloring.
 - No approximation ratio better than 4/3 is possible unless P=NP
 - Otherwise you would have to be able to figure out if a 3-colorable graph can be colored in < 4 colors, i.e. if it can be 3-colored

Travelling Sales Problem

- TSP
 - Given a weighted graph G find of a smallest weight tour that visits all vertices in G

- NP-hard
 - See text

 - Notoriously easy to obtain close to optimal solutions
Minimum Spanning Tree Approximation: Factor of 2

Any tour contains a spanning tree

\[\text{MST}(G) \leq \text{TOUR}_{\text{OPT}}(G) \leq 2 \text{MST}(G) \leq 2 \text{TOUR}_{\text{OPT}}(G) \]

Why did this work?

- We found an Euler tour on a graph that used the edges of the original graph (possibly repeated).
- The weight of the tour was the total weight of the new graph.
- Suppose now
 - All edges possible
 - Weights satisfy triangle inequality
 \[c(u, w) \leq c(u, v) + c(v, w) \]

Minimum Spanning Tree Approximation: Triangle Inequality

Can shortcut edges
- Go to next new vertex on the Euler tour

Minimum Spanning Tree Approximation: Factor of 2

Shortcut edges

\[\text{TOUR}_{\text{OPT}}(G) \leq 2 \text{MST}(G) \leq 2 \text{TOUR}_{\text{OPT}}(G) \]

Christofides Algorithm: A factor 3/2 approximation

- Any Eulerian subgraph of the weighted complete graph will do
 - Eulerian graphs require that all vertices have even degree so

Christofides Algorithm
- Compute an MST \(T \)
- Find the set \(O \) of odd-degree vertices in \(T \)
- Add a minimum-weight perfect matching \(M \) on the vertices in \(O \) to \(T \) to make every vertex have even degree
 - There are an even number of odd-degree vertices!
- Use an Euler Tour \(E \) in \(T \cup M \) and then shortcut as before

Claim: \(\text{TOUR}_{\text{OPT}} \leq 1.5 \text{Cost}(E) \)
Christofides Approximation

Any tour costs at least the cost of two matchings on O

Claim: $2 \text{Cost}(M) \leq \text{TOUR}_{\text{OPT}}$

Knapsack Problem

- For any $\varepsilon > 0$ can get an algorithm that gets a solution within $(1 + \varepsilon)$ factor of optimal with running time $O(n^2(1/\varepsilon)^2)$
 - “Polynomial-Time Approximation Scheme” or PTAS
 - Based on maintaining just the high order bits in the dynamic programming solution.

What to do if the problem you want to solve is NP-hard

- Try an algorithm that is provably fast “on average”.
 - To even try this one needs a model of what a typical instance is.
 - Typically, people consider “random graphs”
 - e.g. all graphs with a given # of edges are equally likely
 - Problems:
 - real data doesn’t look like the random graphs
 - distributions of real data aren’t analyzable

What to do if the problem you want to solve is NP-hard

- Use heuristic algorithms and hope they give good answers
 - No guarantees of quality
 - Many different types of heuristic algorithms
 - Many different options, especially for optimization problems, such as TSP, where we want the best solution.
 - We’ll mention several on following slides

What to do if the problem you want to solve is NP-hard

- Try to search the space of possible hints in a more efficient way and hope it is quick enough
 - e.g. back-tracking search
 - For Satisfiability there are 2^n possible truth assignments
 - If we set the truth values one-by-one we might be able to figure out whole parts of the space to avoid,
 - e.g. After setting $x_1 = 1, x_2 = 0$ we don’t even need to set x_3 or x_4 to know that it won’t satisfy $(\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land (x_4 \lor \neg x_3) \land (\neg x_1 \lor \neg x_4)$
 - For Satisfiability this seems to run in times like $2^{n^{20}}$ on typical hard instances.
 - Related technique: branch-and-bound
Heuristic algorithms for NP-hard problems

- **local search** for optimization problems
 - need a notion of two solutions being neighbors
 - Start at an arbitrary solution \(S \)
 - While there is a neighbor \(T \) of \(S \) that is better than \(S \)
 \[S \leftarrow T \]
 - Usually fast but often gets stuck in a local optimum and misses the global optimum
 - With some notions of neighbor can take a long time in the worst case

- **randomized local search**
 - start local search several times from random starting points and take the best answer found from each point
 - more expensive than plain local search but usually much better answers

- **simulated annealing**
 - like local search but at each step sometimes move to a worse neighbor with some probability
 - probability of going to a worse neighbor is set to decrease with time as, presumably, solution is closer to optimal
 - helps avoid getting stuck in a local optimum but often slow to converge
 (much more expensive than randomized local search)
 - analogy with slow cooling to get to lowest energy state in a crystal (or in forging a metal)

- **genetic algorithms**
 - view each solution as a string (analogy with DNA)
 - maintain a population of good solutions
 - allow random mutations of single characters of individual solutions
 - combine two solutions by taking part of one and part of another (analogy with crossover in sexual reproduction)
 - get rid of solutions that have the worst values and make multiple copies of solutions that have the best values
 - little evidence that they work well and they are usually very slow
 - as much religion as science

- **artificial neural networks**
 - based on very elementary model of human neurons
 - Set up a circuit of artificial neurons
 - each artificial neuron is an analog circuit gate whose computation depends on a set of connection weights
 - Train the circuit
 - Adjust the connection strengths of the neurons by giving many negative training examples and seeing if it behaves correctly
 - The network is now ready to use
 - useful for ill-defined classification problems such as optical character recognition but not typical cut & dried problems

- **DNA computing**
 - Each possible hint for an NP problem is represented as a string of DNA
 - fill a test tube with all possible hints
 - View verification algorithm as a series of tests
 - e.g. checking each clause is satisfied in case of satisfiability
 - For each test in turn
 - use lab operations to filter out all DNA strings that fail the test (works in parallel on all strings; uses PCR)
 - If any string remains the answer is a YES.
 - Relies on fact that Avogadro’s number \(6 \times 10^{23} \) is large to get enough strings to fit in a test-tube.
 - Error-prone & so far only problem sizes less than 15!
Other fun directions

Quantum computing

- Use physical processes at the quantum level to implement weird kinds of circuit gates
- Unitary transformations
- Quantum objects can be in a superposition of many pure states at once
- Can have n objects together in a superposition of 2^n states
- Each quantum circuit gate operates on the whole superposition of states at once
- Inherent parallelism

- Need totally new kinds of algorithms to work well. Theoretically able to factor efficiently but huge practical problems: errors, decoherence.