CSE 421
Introduction to Algorithms
Winter 2000

NP-Completeness
(Chapter 11)

Easy Problems vs. Hard Problems

Easy - problems whose worst case running time is bounded by some polynomial in the size of the input.

Easy = Efficient

Hard - problems that cannot be solved efficiently.

The class P

Definition: \(P = \) set of problems solvable by computers in polynomial time.

i.e. \(T(n) = O(n^k) \) for some \(k \).

• These problems are sometimes called tractable problems.

Examples: sorting, SCC, matching, max flow, shortest path, MST – all of 421 except Stamps/Knapsack/Partition

Is P a good definition of efficient?

Is \(O(n^{100}) \) efficient? Is \(O(10^9 n) \) efficient?

Are \(O(2^n) \), \(O(2^{n/1000}) \), \(O(n\log n) \), …really so bad?

So we have:

\(P = \) “easy” = efficient = tractable

= solvable in polynomial-time

not \(P = \) hard = not tractable

USUALLY
Decision Problems

- Technically, we restrict discussion to decision problems - problems that have an answer of either yes or no.
- Usually easy to convert to decision problem:
 - Example: Instead of looking for the size of the shortest path from \(s \) to \(t \) in a graph \(G \), we ask:
 “Is there a path from \(s \) to \(t \) of length \(\leq k \)?”

Examples of Decision Problems in P

- **Big Flow**
 - Given: graph \(G \) with edge lengths, vertices \(s \) and \(t \), integer \(k \).
 - Question: Is there an \(s\)-\(t \) flow of length \(\geq k \)?

- **Small Spanning Tree**
 - Given: weighted undirected graph \(G \), integer \(k \).
 - Question: Is there a spanning tree of weight \(\leq k \)?

Decision Problems as a Language-recognition problem

- Let \(U \) be the set of all possible inputs to the decision problem.
- \(L \subseteq U \) = the set of all inputs for which the answer to the problem is yes.
- We call \(L \) the language corresponding to the problem. (problem = language)
- The decision problem is thus:
 - to recognize whether or not a given input belongs to \(L \) = the language recognition problem.

Loss of generality?
- A. Not much. If we know how to solve the decision problem, then we can usually solve the original problem.
- B. More importantly, decision problem is easier (at least, not harder), so a lower bound on decision problem is a lower bound on general problem.
The class NP

Definition: $\text{NP} = \text{set of problems solvable by a non-deterministic algorithm in polynomial time.}$

Another way of saying this:

$\text{NP} = \text{The class of problems whose solution can be verified in polynomial time.}$

$\text{NP} = \text{“non-deterministic polynomial”}$

Examples: all of problems in P plus: SAT, TSP, Hamiltonian cycle, bin packing, vertex cover.

Complexity Classes

$\text{NP} = \text{Polynomial-time verifiable}$

$\text{P} = \text{Polynomial-time solvable}$

Verifying Solutions

Given a **problem** and a **potential solution**, verify that the solution is correct in polynomial-time.

In general, **guess** a solution, and then **check** if the guess is correct in polynomial time.

Examples of Problems in NP

Vertex Cover

A **vertex cover** of G is a set of vertices such that every edge in G is incident to at least one of these vertices. Example:

Question: Given a graph G, integer k, determine whether G has a vertex cover containing $\leq k$ vertices?

Verify: Given a set of $\leq k$ vertices, does it cover every edge? (Guess and check in polynomial time.)
Examples of Problems in NP

Satisfiability (SAT)
A Boolean formula in conjunctive normal form (CNF) is **satisfiable** if there exists a truth assignment of 0’s and 1’s to its variables such that the value of the expression is 1. Example:

\[S = (x+y+z) \land (\neg x+y+z) \land (\neg x+y+z) \]

Question: Given a Boolean formula in CNF, is it satisfiable?
Verify: Given a truth assignment, does it satisfy the formula? (Guess and check in polynomial time.)

Problems in P can also be verified in polynomial-time

Shortest Path: Given a graph \(G \) with edge lengths, is there a path from \(s \) to \(t \) of length \(\leq k \)?
Verify: Given a path from \(s \) to \(t \), is its length \(\leq k \)?

Small Spanning Tree: Given a weighted undirected graph \(G \), is there a spanning tree of weight \(\leq k \)?
Verify: Given a spanning tree, is its weight \(\leq k \)?

Nondeterminism

- A **nondeterministic algorithm** has all the “regular” operations of any other algorithm available to it.
- *In addition*, it has a powerful primitive, the **nd-choice primitive**.
- The **nd-choice primitive** is associated with a fixed number of choices, such that each choice causes the algorithm to follow a different computation path.

Nondeterminism (cont.)

- A **nondeterministic algorithm** consists of an interleaving of regular deterministic steps and uses of the **nd-choice primitive**.
- Definition: the algorithm accepts a language \(L \) if and only if
 - It has at least one “good” (accepting) sequence of choices for every \(x \in L \), and
 - For all \(x \notin L \), it reaches a reject outcome on all paths.
P vs NP vs Exponential Time

- **Theorem:** Every problem in NP can be solved deterministically in exponential time.

- **Proof:** The nondeterministic algorithm makes only n^k choices. Try all 2^{n^k} possibilities; if any succeed, accept; if all fail, reject.

The class NP-complete

We are pretty sure that no problem in NP – P can be solved in polynomial time.

Non-Definition: NP-complete = the *hardest* problems in the class NP. (Formal definition later.)

Interesting fact: If any one NP-complete problem could be solved in polynomial time, then *all* NP-complete problems could be solved in polynomial time.

Complexity Classes

- **NP** = Poly-time verifiable
- **P** = Poly-time solvable
- **NP-Complete** = “Hardest” problems in NP

The class NP-complete (cont.)

Thousands of important problems have been shown to be NP-complete.

Fact (Dogma): The general belief is that there is no efficient algorithm for any NP-complete problem, but no proof of that belief is known.

Examples: SAT, clique, vertex cover, Hamiltonian cycle, TSP, bin packing.
Does $P = NP$?

- This is an open question.
- To show that $P = NP$, we have to show that every problem that belongs to NP can be solved by a polynomial time deterministic algorithm.
- No one has shown this yet.
- (It seems unlikely to be true.)

Dealing with NP-complete Problems

What if I think my problem is not in P?

Here is what you might do:

1) Prove your problem is **NP-complete** (a common, but not guaranteed outcome)
2) Come up with an algorithm to solve the problem **usually** or **approximately**.
Reductions: a useful tool

Definition: To reduce A to B means to figure out how to solve A, given a subroutine solving B.

Example: reduce MEDIAN to SORT
Solution: sort, then select \((n/2)\) th

Example: reduce SORT to FIND_MAX
Solution: FIND_MAX, remove it, repeat

Example: reduce MEDIAN to FIND_MAX
Solution: transitivity: compose solutions above.

More Examples of reductions

Example:
reduce BIPARTITE_MATCHING to MAX_FLOW

Is there a matching of size \(k\)?
Is there a flow of size \(k\)?

\[
\text{All capacities } = 1
\]

Polynomial-Time Reductions

Definition: Let \(L_1\) and \(L_2\) be two languages from the input spaces \(U_1\) and \(U_2\).

We say that \(L_1\) is **polynomially reducible** to \(L_2\) if there exists a polynomial-time algorithm \(f\) that converts each input \(u_1 \in U_1\) to another input \(u_2 \in U_2\) such that \(u_1 \in L_1\) iff \(u_2 \in L_2\)

\[
\begin{align*}
 u_1 \in L_1 & \iff f(u_1) \in L_2 \\
 u_1 \in L_1 & \iff f(u_1) \in L_2 \\
 U_1 & \implies f \implies U_2 \\
 L_1 & \implies f \implies L_2
\end{align*}
\]
Polynomial-Time Reductions (cont.)

Define: \(A \leq_p B \) “\(A \) is polynomial-time reducible to \(B \)” if there is a polynomial-time computable function \(f \) such that:

\[x \in A \iff f(x) \in B \]

“complexity of \(A \)” \(\leq \) “complexity of \(B \)” + “complexity of \(f \)”

(1) \(A \leq_p B \) and \(B \in \mathbf{P} \) \(\Rightarrow \) \(A \in \mathbf{P} \)

(2) \(A \leq_p B \) and \(A \notin \mathbf{P} \) \(\Rightarrow \) \(B \notin \mathbf{P} \)

(3) \(A \leq_p B \) and \(B \leq_p C \) \(\Rightarrow \) \(A \leq_p C \) (transitivity)

Using an Algorithm for \(B \) to Decide \(A \)

Algorithm to decide \(A \)

\[x \]

Algorithm to decide \(B \)

\[f(x) \]

f(x) \(\in \) \(B \)？

x \(\in \) \(A \)？

“If \(A \leq_p B \), and we can solve \(B \) in polynomial time, then we can solve \(A \) in polynomial time also.”

Ex: suppose \(f \) takes \(O(n^3) \) and algorithm for \(B \) takes \(O(n^2) \). How long does the above algorithm for \(A \) take?

Definition of NP-Completeness

Definition: Problem \(B \) is NP-hard if every problem in NP is polynomially reducible to \(B \).

Definition: Problem \(B \) is NP-complete if:

1. \(B \) belongs to NP, and
2. \(B \) is NP-hard.

Proving a problem is NP-complete

- Technically, for condition (2) we have to show that every problem in NP is reducible to \(B \). (yikes!) This sounds like a lot of work.
- For the very first NP-complete problem (SAT) this had to be proved directly.
- However, once we have one NP-complete problem, then we don’t have to do this every time.
- Why? Transitivity.
Re-stated Definition

Lemma 11.3: Problem B is NP-complete if:

1. B belongs to NP, and
2. A is polynomial-time reducible to B, for some problem A that is NP-complete.

That is, to show (2') given a new problem B, it is sufficient to show that SAT or any other NP-complete problem is polynomial-time reducible to B.

Usefulness of Transitivity

Now we only have to show $L' \leq_p L$, for some problem $L' \in$ NP-complete, in order to show that L is NP-hard. Why is this equivalent?

1) Since $L' \in$ NP-complete, we know that L' is NP-hard. That is:

$$\forall L'' \in \text{NP}, \text{ we have } L'' \leq_p L'$$

2) If we show $L' \leq_p L$, then by transitivity we know that: $\forall L'' \in \text{NP}, \text{ we have } L'' \leq_p L$.

Thus L is NP-hard.

The growth of the number of NP-complete problems

- Steve Cook (1971) showed that SAT was NP-complete.
- Richard Karp (1972) found 24 more NP-complete problems.
- Today there are thousands of known NP-complete problems.
 - Garey and Johnson (1979) is an excellent source of NP-complete problems.

SAT is NP-complete

Cook’s theorem: SAT is NP-complete

Satisfiability (SAT)

A Boolean formula in conjunctive normal form (CNF) is satisfiable if there exists a truth assignment of 0’s and 1’s to its variables such that the value of the expression is 1. Example:

$$S = (x \lor y \lor \neg z) \land (\neg x \land y \land z) \land (\neg x \lor y \lor \neg z)$$

Example above is satisfiable. (We an see this by setting $x=1$, $y=1$ and $z=0$.)
SAT is NP-complete

Rough idea of proof:

(1) **SAT is in NP** because we can guess a truth assignment and check that it satisfies the expression in polynomial time.

(2) **SAT is NP-hard** because

Cook proved it directly, but easier to see via an intermediate problem – **Circuit-SAT**
How do you prove problem A is NP-complete?

1) **Prove A is in NP:** show that given a solution, it can be verified in polynomial time.

2) **Prove that A is NP-hard:**
 a) Select a known NP-complete problem B.
 b) Describe a polynomial time computable algorithm that computes a function f, mapping every instance of B to an instance of A. (that is: $B \leq_p A$)
 c) Prove that every yes-instance of B maps to a yes-instance of A, and every no-instance of B maps to a no-instance of A.
 d) Prove that the algorithm computing f runs in polynomial time.

Proof that problem A is NP-complete

1) **Prove A is in NP:** “Given a possible solution to A, I can verify its correctness in polynomial-time.”

2) **Prove that A is NP-hard:**
 a) “I will reduce known NP-complete problem B to $A.”
 b) “Let b be an arbitrary instance of problem B. Here is how you convert b to an instance a of problem $A.”
 Note: this method must work for ANY instance of B.
 c) “If a is a “yes”-instance, then this implies that b is also a “yes”-instance. **Conversely**, if b is a “yes”-instance, then this implies that a is also a “yes”-instance.”
 d) “The conversion from B to A runs in polynomial time because…”

NP-complete problem: Vertex Cover

Input: Undirected graph $G = (V, E)$, integer k.
Output: True iff there is a subset C of V of size $\leq k$ such that every edge in E is incident to at least one vertex in C.

Example: Vertex cover of size ≤ 2.

NP-complete problem: Clique

Input: Undirected graph $G = (V, E)$, integer k.
Output: True iff there is a subset C of V of size $\geq k$ such that all vertices in C are connected to all other vertices in C.

Example: Clique of size ≥ 4
NP-complete problem: Satisfiability (SAT)

Input: A Boolean formula in CNF form.

Output: True iff there is a truth assignment of 0’s and 1’s to the variables such that the value of the expression is 1.

Example: Formula S is satisfiable with the truth assignment $x=1$, $y=1$ and $z=0$.

$S= (x+y+\neg z) \cdot (\neg x+y+z) \cdot (\neg x+\neg y+\neg z)$

NP-complete problem: 3-Coloring

Input: An undirected graph $G=(V,E)$.

Output: True iff there is an assignment of colors to the vertices in G such that no two adjacent vertices have the same color. (using only 3 colors)

Example:

NP-complete problem: Knapsack

Input: set of objects with weights and values, a maximum weight that can be carried and a desired value. (see p. 357 in Manber)

Output: True iff there is a subset of the objects with (total weight \leq allowable weight) and (total value \geq desired value).

Example: Items: $\{a, b, c\}$, size(a)=3, size(b)=6, size(c)=4

value(a)=30, value(b)=24, value(c)=18

Max weight = 10, Desired value = 50.

Answer: yes, $\{a,b\}$

NP-complete problem: Partition

Input: Set of items S, each with an associated size. The sum of the items’ sizes is $2k$.

Output: True iff there is a subset of the items whose sizes add up to k.

Example: $S= \{2,3,10,4,6\}$. Is there a subset of items that sums to 13? (yes)
NP-complete problem: TSP

Input: An undirected graph $G=(V,E)$ with integer edge weights, and an integer b.

Output: True iff there is a simple cycle in G passing through all vertices (once), with total cost $\leq b$.

Example:

$b = 34$

![Graph diagram](image)
A 3-Coloring Gadget

"Sort of an OR gate":
(1) if any input is T, the output can be T
(2) if output is T, some input must be T

Coping with NP-Completeness

• Is your real problem a special subcase?
 – E.g. 3-SAT is NP-complete, but 2-SAT is not;
 – Ditto 3- vs 2-coloring
 – E.g. maybe you only need planar graphs, or degree 3 graphs, or …
• Guaranteed approximation good enough?
 – E.g. Euclidean TSP within 1.5 * Opt in poly time
• Clever exhaustive search, e.g. Branch & Bound
• Heuristics – usually a good approximation and/or usually fast

2x Approximation to EuclideanTSP

• A TSP tour visits all vertices, so contains a spanning tree, so TSP cost is > cost of min spanning tree.
• Find MST
• Double all edges
• Find Euler Tour
• Shortcut
• Cost of shortcut < ET = 2 * MST < 2 * TSP

1.5x Approximation to EuclideanTSP

• Find MST
• Find min cost matching among odd-degree tree vertices
• Cost of matching ≤ TSP/2
• Find Euler Tour
• Shortcut
• Shortcut ≤ ET ≤ MST + TSP/2 < 1.5* TSP