Dynamic Programming

- Outline:
 - Example 1 – Licking Stamps
 - General Principles
 - Example 2 – Knapsack (§ 5.10)
 - Example 3 – Sequence Comparison (§ 6.8)

Licking Stamps

- Given:
 - Large supply of 5¢, 4¢, and 1¢ stamps
 - An amount N
 - Problem: choose fewest stamps totaling N

How to Lick 27¢

<table>
<thead>
<tr>
<th># of 5¢ Stamps</th>
<th># of 4¢ Stamps</th>
<th># of 1¢ Stamps</th>
<th>Total Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Moral: Greed doesn’t pay

A Simple Algorithm

- At most N stamps needed, etc.
 - for $a = 0, \ldots, N$
 - for $b = 0, \ldots, N$
 - for $c = 0, \ldots, N$
 - if $(5a + 4b + c = N \land a + b + c$ is new min)
 - retain (a, b, c)
 - output retained triple;
- Time: $O(N^3)$
 (Not too hard to see some optimizations, but we’re after bigger fish…)
Better Idea

Theorem: If last stamp licked in an optimal solution has value v, then previous stamps form an optimal solution for N-v.

Proof: if not, we could improve the solution for N by using opt for N-v.

\[
M(i) = \min \begin{cases}
0 & i = 0 \\
1 + M(i-5) & i \geq 5 \\
1 + M(i-4) & i \geq 4 \\
1 + M(i-1) & i \geq 1
\end{cases}
\]

where \(M(i) \) = min number of stamps totaling \(i \)

New Idea: Recursion

\[
M(i) = \min \begin{cases}
0 & i = 0 \\
1 + M(i-5) & i \geq 5 \\
1 + M(i-4) & i \geq 4 \\
1 + M(i-1) & i \geq 1
\end{cases}
\]

Another New Idea: Avoid Recomputation

- Tabulate values of solved subproblems
 - Top-down: "memoization"
 - Bottom up:

 \[
 \text{for } i = 0, \ldots, N \text{ do } M(i) = \min \begin{cases}
0 & i = 0 \\
1 + M(i-5) & i \geq 5 \\
1 + M(i-4) & i \geq 4 \\
1 + M(i-1) & i \geq 1
\end{cases}
 \]

- Time: \(O(N) \)

Finding How Many Stamps

\[
1 + \text{Min}(3, 1, 3) = 2
\]

Finding Which Stamps: Trace-Back

\[
1 + \text{Min}(3, 1, 3) = 2
\]

Complexity Note

- \(O(N) \) is better than \(O \left(N^3 \right) \) or \(O \left(3^{N/5} \right) \)

- But still \textit{exponential} in input size (\log N bits)

 (E.g., miserably slow if \(N \) is 64 bits – \(2^{64} \) steps for 64 bit input.)

- Note: can do in \(O(1) \) for 5¢, 4¢, and 1¢ but not in general. See “NP-Completeness” later
Elements of Dynamic Programming

- What feature did we use?
- What should we look for to use again?
- “Optimal Substructure”
 - Optimal solution contains optimal subproblems
- “Repeated Subproblems”
 - The same subproblems arise in various ways

The Knapsack Problem (§ 5.10)

Given positive integers W, w_1, w_2, \ldots, w_n.
Find a subset of the w_i’s totaling exactly W.
Alternate (Easier?) Problem: Is there one?

(Like stamp problem, but limited supply of each.)

Motivation: simple 1-d abstraction of packing boxes, trucks, VLSI chips, …

Knapsack Example

$w_1, \ldots, w_4 = 2, 5, 9, 11$

- $W = 14$:
 - YES: $5+9 = 14$
- $W = 15$:
 - NO: all singletons up to 11 too small,
 - all pairs too small, except $9+11$, $5+11$ too big
 - all triples ≤ 16: too big
 - all quadruples too big

Solve by Induction? Try 1

- Defn: Let $P(i, X)$ be true iff there is a subset of first i weights w_1, w_2, \ldots, w_i totaling X
- Assume we know how to evaluate $P(n-1, X)$ for all X
 - Case 1: $P(n-1, W) = True$ – done; w_n unneeded
 - Case 2: $P(n-1, W) = False$ – may or may not be a solution, but if there is one, it includes w_n, and other included weights total $W-w_n$, so $P(n, W) = P(n-1, W-w_n)$

Algorithm:
 - $P(n, W) = P(n-1, W) \lor P(n-1, W-w_n)$
 - Basis: $P(0, X) = True$ iff ($X = 0$)

Solve by Induction? Try 2

- Defn: Let $P(i, X)$ be true iff there is a subset of first i weights w_1, w_2, \ldots, w_i totaling X
- Assume we know $P(n-1, X)$ for all $X \leq W$
 - Case 1: $P(n-1, W) = True$ – done; w_n unneeded
 - Case 2: $P(n-1, W) = False$ – may or may not be a solution, but if there is one, it includes w_n, and other included weights total $W-w_n$, so $P(n, W) = P(n-1, W-w_n)$

Algorithm:
 - $P(n, W) = P(n-1, W) \lor P(n-1, W-w_n)$
 - Basis: $P(0, X) = True$ iff ($X = 0$)

Knapsack Example

$w_1, \ldots, w_4 = 2, 5, 9, 11$, $W = 15$

$W = 14$: YES
$W = 15$: NO
Dynamic Programming?

\[P(n,W) = P(n-1, W) \lor P(n-1, W-w_n) \]

- Optimal substructure?
 - Best/only way to fill a big knapsack implicitly fills smaller ones with fewer objects in the best or only way
- Repeated subproblems?
 - Smallest cases potentially common to many bigger instances

Complexity Notes

- Time is \(O(NW) \)
- May or may not beat naïve \(2^N \)
- But still partially exponential in input size (\(N \log W \) bits)
 - E.g. 100 weights, 64 bits each – \(100 \times 2^{64} \) array elements.
 - C.v., e.g., Skyline 100 bids, 64 bit coords – \(c \times 100 \times \log 100 \) steps.
- See “NP-Completeness” later