CSE 421
Introduction to Algorithms

Depth First Search and Strongly Connected Components

Undirected Depth-First Search
- It's not just for trees
- DFS(v)
 - if v marked then return;
 - mark v; #v := ++count;
 - for all edges (v,w) do DFS(w);
- Main()
 - count := 0;
 - for all unmarked v do DFS(v);

Key Properties:
1. No "cross-edges"; only tree- or back-edges
2. Before returning, DFS(v) visits all vertices reachable from v via paths through previously unvisited vertices

Algorithm: Unchanged
- Key Properties:
 1’. Edge (v,w) is:
 - Tree-edge if w unvisited
 - Back-edge if w visited, #w<#v, on stack
 - Cross-edge if w visited, #w<#v, not on stack
 - Forward-edge if w visited, #w>#v
Note: Cross edges only go "Right" to "Left"

An Application:
- G has a cycle ⇐ DFS finds a back edge
 - Clear.
 - Why can't we have something like this?:

Lemma 1
Before returning, dfs(v) visits w iff
- w is unvisited
- w is reachable from v via a path through unvisited vertices
Proof:
- dfs follows all direct out-edges
- call dfs recursively at each unvisited one
- by induction on path length, visits all
Strongly Connected Components

- **Defn:** G is strongly connected if for all u, v there is a (directed) path from u to v and from v to u.
 [Equivalently: there is a cycle through u and v.]
- **Defn:** a strongly connected component of G is a maximal strongly connected subgraph.

Sample Uses for SCC’s

- Optimizing compilers need to find loops, which are SCC’s in the program flow graph.
- Nontrivial SCC’s in call-graph are sets of mutually recursive procedures.
- If (u, v) means process u is waiting for process v, SCC’s show deadlocks.

Two Simple SCC Algorithms

- u, v in same SCC iff there are paths u → v & v → u
- Transitive closure: $O(n^3)$
- DFS from every u, v: $O(ne) = O(n^3)$

Goal:

- Find all Strongly Connected Components in linear time, i.e., time $O(n+e)$
 (Tarjan, 1972)
Definition

The root of an SCC is the first vertex in it visited by DFS.

Equivalently, the root is the vertex in the SCC with the smallest number.

Lemma 2

All members of an SCC are descendants of its root.

Proof:
- all members are reachable from all others
- so, all are reachable from its root
- all are unvisited when root is visited
- so, all are descendants of its root (Lemma 1)

Subgoal

- Can we identify some root?
- How about the root of the first SCC completely explored by DFS?
- Key idea: no exit from first SCC (first SCC is leftmost “leaf” in collapsed DAG)

Definition

x is an exit from v (from v’s subtree) if
- x is not a descendant of v, but
- x is the head of a (cross- or back-) edge from a descendant of v (including v itself)

NOTE: #x < #v

Lemma 3

If v is not a root, then v has an exit.

Proof:
- let r be root of v’s SCC
- r is a proper ancestor of v (Lemma 2)
- let x be the first vertex that is not a descendant of v on a path v → r.
- x is an exit

Cor: If v has no exit, then v is a root.

NB: converse not true; some roots do have exits
Lemma 4

If \(r \) is the first root from which dfs returns, then \(r \) has no exit

Proof (by contradiction):
- Suppose \(x \) is an exit
- \(r \) not reachable from \(x \), else in same SCC
- \(\#z <= \#x \) (Lemma 2)
- \(\#x < \#r \) (\(x \) is an exit from \(r \))
- \(\#z < \#r \), so return from \(z \) first
- Contradiction

How to Find Exits (in 1st component)

- All exits \(x \) from \(v \) have \(\#x < \#v \)
- Suffices to find any of them, e.g. \(\min \# \)
- Defn:
 \[LOW(v) = \min(\{\#x | x \text{ an exit from } v\} \cup \{\#v\}) \]
- Calculate inductively:
 \[LOW(v) = \min: \]
 - \(\#v \)
 - \(\{LOW(w) | w \text{ a child of } v\} \)
 - \(\{\#x | (v,x) \text{ is a back- or cross-edge}\} \)
- 1st root: \(LOW(v) = v \)

Finding Other Components

- Key idea: No exit from
 - 1st SCC
 - 2nd SCC, except maybe to 1st
 - 3rd SCC, except maybe to 1st and/or 2nd
 - ...

Lemma 3'

If \(v \) is not a root, then \(v \) has an exit.

Proof:
- \(r \) be root of \(v \)'s SCC
- \(r \) a proper ancestor of \(v \) (Lemma 2)
- \(x \) first vertex that is not a descendant of \(v \) on a path \(v \rightarrow r \)
- \(x \) an exit
- \(x \) in \(v \)'s SCC

Cor: If \(v \) has no exit, then \(v \) is a root.

Lemma 4'

If \(r \) is the first root from which dfs returns, then \(r \) has no exit

Proof:
- Suppose \(x \) is an exit
- \(r \) be root of \(x \)'s SCC
- \(r \) not reachable from \(z \), else in same SCC
- \(\#z <= \#x \) (Lemma 2)
- \(\#z < \#r \) (\(z \) is an exit from \(r \))
- \(\#z < \#r \), so return from \(z \) first
- Contradiction

i.e., \(x \) in first (k-1) components
How to Find Exits (in 1st component)

- All exits x from v have \#x < \#v
- Suffices to find any of them, e.g. min \#x
- Defn:
 \[\text{LOW}(v) = \min\{ \#x | x \text{ an exit from } v \} \cup \{\#v\} \]
- Calculate inductively:
 \[\text{LOW}(v) = \min \text{ of:} \]
 - \#v
 - \{ \text{LOW}(w) | w \text{ a child of } v \}
 - \{ \#x | (v,x) \text{ is a back- or cross-edge} \}

SCC Algorithm

\[\text{SCC}(v) \]
\[\#v = \text{vertex_number++; } v.\text{low} = \#v; \text{push}(v) \]
\[\text{for all edges } (v,w) \]
\[\text{if } \#w = 0 \text{ then} \]
\[\text{SCC}(w); v.\text{low} = \min(v.\text{low}, w.\text{low}) \] // tree edge
\[\text{else if } \#w < \#v \&\& w.\text{scc} = 0 \text{ then} \]
\[v.\text{low} = \min(v.\text{low}, \#w) \] // cross- or back-edge
\[\text{if } \#v = v.\text{low} \text{ then} \]
\[\text{v is root of new scc} \]
\[\text{scc}++; \]
\[\text{repeat} \]
\[w = \text{pop(); } w.\text{scc} = \text{scc#; } \] // mark SCC members
\[\text{until } w = v \]

Complexity

- Look at every edge once
- Look at every vertex (except via in-edge) at most once
- Time = \(O(n+e) \)