CSE 421
Introduction to Algorithms
Winter 2000

The Network Flow Problem

How much stuff can flow from s to t?

Net Flow: Formal Definition

Given:
- A digraph G = (V,E)
- Two vertices s,t in V (source & sink)
- A capacity \(c(u,v) \geq 0 \) for each \((u,v) \in E\)
 (and \(c(u,v) = 0 \) for all non-edges \((u,v)\))

Find:
- A flow function \(f: V \times V \rightarrow \mathbb{R} \)
 s.t.,
 \[f(u,v) \leq c(u,v) \] [Capacity Constraint]
 \[f(u,v) = -f(v,u) \] [Skew Symmetry]
 \[\forall u \neq s,t, f(u,V) = 0 \] [Flow Conservation]

Maximizing total flow \(|f| = f(s,V) \)

Notation:
\[f(x,y) = \sum_{x \in X} \sum_{y \in Y} f(x,y) \]

Example: A Flow Function

\[f(s,u) = f(u,t) = 2 \]
\[f(u,b) = f(b,u) = -2 \]

\[f(s,V) = \sum_{(u,v) \in V} f(u,v) = f(s,u) + f(u,s) + f(u,t) = -2 + 2 = 0 \]

Example: A Flow Function

- Not shown: \(f(u,v) \) if \(\leq 0 \)
- Note: max flow \(\geq 4 \) since \(f \) is a flow function, with \(|f| = 4 \)

Max Flow via a Greedy Alg?

While there is an s \(\rightarrow \) t path in G
- Pick such a path, p
- Find c, the min capacity of any edge in p
- Subtract c from all capacities on p
- Delete edges of capacity 0
- This does NOT always find a max flow:

If pick s \(\rightarrow b \) \(\rightarrow a \) \(\rightarrow t \) first, flow stuck at 2.
But flow 3 possible.
A Brief History of Flow

- $n =$ # of vertices
- $m =$ # of edges
- $U =$ Max capacity

Source: Goldberg & Rao, FOCS '97

Greed Revisited

Residual Capacity

- The residual capacity (w.r.t. f) of (u,v) is $c_f(u,v) = c(u,v) - f(u,v)$

- e.g. $c_f(s,b)=7$; $c_f(a,x) = 1$; $c_f(x,a) = 3$

Residual Networks & Augmenting Paths

- The residual network (w.r.t. f) is the graph $G_f = (V,E_f)$, where $E_f = \{ (u,v) | c_f(u,v) > 0 \}$

- An augmenting path (w.r.t. f) is a simple $s \to t$ path in G_f.

A Residual Network

An Augmenting Path
Lemma 1

If f admits an augmenting path p, then f is not maximal.

Proof: “obvious” -- augment along p by c_p, the min residual capacity of p's edges.

Augmenting A Flow

Ford-Fulkerson Method

While G_f has an augmenting path, augment

- Questions:
 - Does it halt?
 - Does it find a maximum flow?
 - How fast?

Cuts

- A partition S,T of V is a cut if $s \in S, t \in T$
- Capacity of cut S,T is $c(S,T) = \sum_{u \in S, v \in T} c(u,v)$
Lemma 2

- For any flow \(f \) and any cut \(S,T \),
 - the net flow across the cut equals the total flow, i.e., \(|f| = f(S,T) \), and
 - the net flow across the cut cannot exceed the capacity of the cut, i.e. \(f(S,T) \leq c(S,T) \)

Corollary:

Max flow \(\leq \) Min cut

<table>
<thead>
<tr>
<th>Cut Cap</th>
<th>Net Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Max Flow / Min Cut Theorem

For any flow \(f \), the following are equivalent

1. \(|f| = c(S,T) \) for some cut \(S,T \) (a min cut)
2. \(f \) is a maximum flow
3. \(f \) admits no augmenting path

Proof:

1. \(\Rightarrow \) 2: corollary to lemma 2
2. \(\Rightarrow \) 3: lemma 1

Max Flow / Min Cut Theorem

(3) \(\Rightarrow \) (1)

- \(S = \{ u \mid \exists \) an augmenting path from \(s \) to \(u \} \)
- \(T = V - S; \ s \in S, t \in T \)
- For any \((u,v)\) in \(S \times T, \exists \) an augmenting path from \(s \) to \(u \), but not to \(v \).
 - \((u,v)\) has 0 residual capacity:
 - \((u,v)\) in \(E \) \(\Rightarrow \) saturated
 - \((v,u)\) in \(E \) \(\Rightarrow \) no flow
 - \(f(u,v) = f(v,u) = 0 \)

This is true for every edge crossing the cut, i.e.

\[
|f| = f(S,T) = \sum_{S \in T} f(u,v) = \sum_{T \in S} f(u,v) = c(S,T)
\]

Edmonds-Karp Algorithm

- Use a shortest augmenting path
 (via Breadth First Search in residual graph)
- Time: \(O(n m^2) \)

BFS/Shortest Path Lemmas

Distance from \(s \) is never reduced by:

- Deleting an edge
 - proof: no new (hence no shorter) path created
- Adding an edge \((u,v)\), provided \(v \) is nearer than \(u \)
 - proof: BFS is unchanged, since \(v \) visited before \((u,v)\) examined
Lemma 27.8 (Alternate Proof)

Let \(f \) be a flow, \(G_f \) the residual graph, and \(p \) a shortest augmenting path. Then no vertex is closer to \(s \) after augmentation along \(p \).

Proof: Augmentation only deletes edges, adds back edges.

Augmentation vs BFS

Theorem 27.9

The Edmonds-Karp Algorithm performs \(O(mn) \) flow augmentations.

Proof: \(\{u,v\} \) is critical on augmenting path \(p \) if it’s closest to \(s \) having min residual capacity won’t be critical again until farther from \(s \) so each edge critical at most \(n \) times.

Corollary

- Edmonds-Karp runs in \(O(nm^2) \)

Flow Integrality Theorem

If all capacities are integers
 - The max flow has an integer value
 - Ford-Fulkerson method finds a max flow in which \(f(u,v) \) is an integer for all edges \((u,v) \)