

CSE 417
Algorithms and Complexity
Winter 2023
Lecture 26
NP-Completeness and Beyond

Announcements

- Final Exam: Monday, March 13, 8:30 AM - CSE2 G10, 1 hour 50 minutes, Closed Book - Comprehensive (but roughly 2/3rds post midterm) - Topics will include: recurrences, dynamic programming, graph algorithms, NP-Completeness

Fri, March 3	NP-Completeness: Overview, Definitions		
Mon, March 6	NP-Completeness: Reductions		
Wed, March 8	NP-Completeness: Problem Survey		
Fri, March 10	Theory and Beyond NP-Completeness		
Mon, March 13	Final Exam		
$3 / 10 / 2023$	CSE 417	$.$	
:---			

NP-Completeness Proofs

- Prove that problem X is NP-Complete
- Show that X is in NP (usually easy)
- Pick a known NP complete problem Y
- Show $Y<_{p} X$

Reducibility Among Combinatorial Problems

Populating the NP-Completeness

 Universe- Circuit Sat <p 3-SAT
- 3-SAT <p Independent Set
- 3-SAT <p Vertex Cover
- Independent Set <p Clique
- 3-SAT <p Hamiltonian Circuit
- Hamiltonian Circuit <p Traveling Salesman

- 3-SAT <p Integer Linear Programming
- 3-SAT $<_{p}$ Graph Coloring
- 3-SAT <p Subset Sum
- Subset Sum <p Scheduling with Release times and deadlines

Coping with NP-Completeness

- Approximation Algorithms
- Exact solution via Branch and Bound
- Local Search

Multiprocessor Scheduling

- Unit execution tasks
- Precedence graph
- K-Processors
- Polynomial time for k=2
- Open for $k=$ constant

- NP-complete is k is part of the problem

Highest level first is 2-Optimal

Choose k items on the highest level
Claim: number of rounds is at least twice the optimal.

Christofides TSP Algorithm

- Undirected graph satisfying triangle inequality

1. Find MST
2. Add additional edges so that all vertices have even degree
3. Build Eulerian Tour

3/2 Approximation

Christofides Algorithm

Branch and Bound

- Brute force search - tree of all possible solutions
- Branch and bound - compute a lower bound on all possible extensions
- Prune sub-trees that cannot be better than optimal

Branch and Bound for TSP

- Enumerate all possible paths
- Lower bound, Current path cost plus MST of remaining points
- Euclidean TSP
- Points on the plane with Euclidean Distance
- Sample data set: State Capitals

3/10/2023

Local Optimization

- Improve an optimization problem by local improvement
- Neighborhood structure on solutions
- Travelling Salesman 2-Opt (or K-Opt)
- Independent Set Local Replacement

What we don't know

- P vs. NP

If $P \neq N P$, is there anything in between

- Yes, Ladner [1975]
- Problems not known to be in P or NP Complete
- Factorization
- Discrete Log Solve $\mathrm{g}^{\mathrm{k}}=\mathrm{b}$ over a finite group
- Graph Isomorphism

Complexity Theory

- Computational requirements to recognize languages
- Models of Computation
- Resources
- Hierarchies

Time complexity

- P: (Deterministic) Polynomial Time
- NP: Non-deterministic Polynomial Time
- EXP: Exponential Time

Space Complexity

- Amount of Space (Exclusive of Input)
- L: Logspace, problems that can be solved in $\mathrm{O}(\log \mathrm{n})$ space for input of size n
- Related to Parallel Complexity
- PSPACE, problems that can be required in a polynomial amount of space

So what is beyond NP?

NP vs. Co-NP

- Given a Boolean formula, is it true for some choice of inputs
- Given a Boolean formula, is it true for all choices of inputs

Problems beyond NP

- Exact TSP, Given a graph with edge lengths and an integer K , does the minimum tour have length K
- Minimum circuit, Given a circuit C , is it true that there is no smaller circuit that computes the same function a C

Polynomial Hierarchy

- Level 1

$$
-\exists \mathrm{X}_{1} \Phi\left(\mathrm{X}_{1}\right), \quad \forall \mathrm{X}_{1} \Phi\left(\mathrm{X}_{1}\right)
$$

- Level 2

$$
-\forall \mathrm{X}_{1} \exists \mathrm{X}_{2} \Phi\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right), \exists \mathrm{X}_{1} \forall \mathrm{X}_{2} \Phi\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)
$$

- Level 3

$$
-\forall \mathrm{X}_{1} \exists \mathrm{X}_{2} \forall \mathrm{X}_{3} \Phi\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right), \exists \mathrm{X}_{1} \forall \mathrm{X}_{2} \exists \mathrm{X}_{3} \Phi\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right)
$$

Polynomial Space

- Quantified Boolean Expressions

$$
-\exists X_{1} \forall X_{2} \exists X_{3} \ldots \exists X_{n-1} \forall X_{n} \Phi\left(X_{1}, X_{2}, X_{3} \ldots X_{n-1} X_{n}\right)
$$

- Space bounded games
- Competitive Facility Location Problem
- N x N Chess
- Counting problems
- The number of Hamiltonian Circuits

N X N Chess

Even Harder Problems

```
public int[] RecolorSwap(int[] coloring) {
    int k = maxColor(coloring);
    for (int v = 0; v < nVertices; v++) {
        if (coloring[v] == k) {
                        int[] nbdColorCount = ColorCount(v, k, coloring);
                List<Edge> edges1 = vertices[v].Edges;
            foreach (Edge e1 in edges1) {
                int w = e1.Head;
                        if (nbdColorCount[coloring[w]] == 1)
                        if (RecolorSwap(v, w, k, coloring))
                        break;
            }
        }
    }
    return coloring;
}
```


Is this code correct?

Halting Problem

- Given a program P that does not take any inputs, does P eventually exit?

Impossibility of solving the Halting Problem

Suppose Halt(P) returns true if P halts, and false otherwise

Consider the program G :

What is Halt(G)?

Define G \{
if (Halt(G))\{ while (true) ;
\}
else \{ exit();
\}
3

Undecidable Problems

- The Halting Problem is undecidable - Impossible problems are hard . . .

