

Announcements

- Homework 9
- Exam practice problems on course homepage
- Final Exam: Monday, March 13, 8:30 AM

Fri, March 3	NP-Completeness: Overview, Definitions
Mon, March 6	NP-Completeness: Reductions
Wed, March 8	NP-Completeness: Problem Survey
Fri, March 10	Theory and Beyond NP-Completeness
Mon, March 13	Final Exam

NP Completeness: The story so far

Cook's Theorem

- Definition:
- X is NP-Complete if:
- X is in NP
- For all Z in NP: $Z{ }_{<p} X$
- There is an NP Complete problem
- The Circuit Satisfiability Problem

Populating the NP-Completeness

 Universe- Circuit Sat $<_{p}$ 3-SAT
- 3-SAT <p Independent Set
- 3-SAT <p Vertex Cover
- Independent Set <p Clique
- 3-SAT <p Hamiltonian Circuit
- Hamiltonian Circuit <p Traveling Salesman

- 3-SAT <p Integer Linear Programming
- 3-SAT < Graph Coloring
- 3-SAT <p 3 Dimensional Matching
- 3-SAT <p Subset Sum
- Subset Sum <p Scheduling with Release times and deadlines

Satisfiability

Literal: A Boolean variable or its negation.	x_{i} or $\overline{x_{i}}$
Clause: A disjunction of literals.	$C_{j}=x_{1} \vee \overline{x_{2}} \vee x_{3}$
Conjunctive normal form: A propositional formula Φ that is the conjunction of clauses.	$\Phi=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}$

SAT: Given CNF formula Φ, does it have a satisfying truth assignment?

3-SAT: SAT where each clause contains exactly 3 literals.

$$
\begin{aligned}
& \text { Ex: } \quad\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \\
& \text { Yes: } \mathrm{x}_{1}=\text { true, } \mathrm{x}_{2}=\text { true } \mathrm{x}_{3}=\text { false. } \\
& 3 / 8 / 2023
\end{aligned}
$$

Augmenting Path Algorithm for Matching

Find augmenting path in $\mathrm{O}(\mathrm{m})$ time n phases of augmentation $\mathrm{O}(\mathrm{nm})$ time algorithm for matching

Exact Cover (sets of size 3) XC3

```
Given a collection of sets of size 3 of a
domain of size 3N}\mathrm{ , is there a sub-
collection of }N\mathrm{ sets that cover the sets
(A, B, C), (D, E, F), (A, B, G),
    (A,C,I), (B, E, G), (A,G,I),
    (B, D, F), (C, E, I), (C, D, H),
    (D,G, I), (D, F,H), (E,H, I),
    (F,G,H), (F,H,I)
        3DM <p XC3



\section*{Number Problems}
- Subset sum problem
- Given natural numbers \(\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}\) and a target number \(W\), is there a subset that adds up to exactly \(W\) ?
- Subset sum problem is NP-Complete
- Subset Sum problem can be solved in \(\mathrm{O}(\mathrm{nW})\) time

\section*{XC3 < SUBSET SUM}

Idea: Represent each set as a large integer, where the element \(x_{i}\) is encoded as \(D^{i}\) where \(D\) is an integer
\(\left\{x_{3}, x_{5}, x_{9}\right\}=>D^{3}+D^{5}+D^{9}\)
Does there exist a subset that sums to exactly
\(D^{1}+D^{2}+D^{3}+\ldots+D^{n-1}+D^{n}\)

Detail: How large is \(D\) ? We need to make sure that we do not have any carries, so we can choose \(D=m+1\), where \(m\) is the number of sets.

\section*{Integer Linear Programming}
- Linear Programming - maximize a linear function subject to linear constraints
- Integer Linear Programming - require an integer solution
- NP Completeness reduction from 3-SAT

Use 0-1 variables for \(x_{i}\) 's
Constraint for clause: \(\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{2}}\right)\)
\(x_{1}+\left(1-x_{2}\right)+\left(1-x_{3}\right)>0\)

\section*{Scheduling with release times and deadlines (RD-Sched)}
- Tasks, \(\left\{\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots \mathrm{t}_{\mathrm{n}}\right\}\)
- Task \(\mathrm{t}_{\mathrm{j}}\) has a length \(\mathrm{l}_{\mathrm{j}}\), release time \(\mathrm{r}_{\mathrm{j}}\) and deadline \(d_{j}\)
- Once a task is started, it is worked on without interruption until it is completed
- Can all tasks be completed satisfying constraints?

\section*{Subset Sum \(<_{p}\) RD-Sched}
- Subset Sum Problem
\(-\left\{s_{1}, s_{2}, \ldots, s_{N}\right\}\), integer \(K_{1}\)
- Does there exist a subset that sums to \(K_{1}\) ?
- Assume the total sums to \(\mathrm{K}_{2}\)

\section*{Reduction}
- Tasks \(\left\{t_{1}, t_{2}, \ldots t_{N}, x\right\}\)
- \(t_{j}\) has length \(s_{j}\), release 0 , deadline \(K_{2}+1\)
- \(x\) has length 1 , release \(\mathrm{K}_{1}\), deadline \(\mathrm{K}_{1}+1\)

Friday: NP-Completeness and Beyond!
```

