

CSE 417 Algorithms and Complexity

Winter 2023
Lecture 25
NP-Completeness, Part III

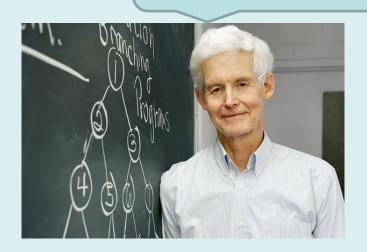
Announcements

- Homework 9
- Exam practice problems on course homepage
- Final Exam: Monday, March 13, 8:30 AM

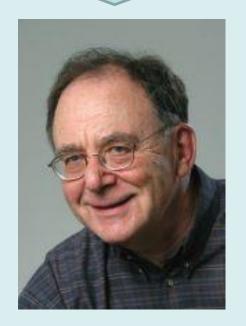
Fri, March 3	NP-Completeness: Overview, Definitions
Mon, March 6	NP-Completeness: Reductions
Wed, March 8	NP-Completeness: Problem Survey
Fri, March 10	Theory and Beyond NP-Completeness
Mon, March 13	Final Exam

NP Completeness: The story so far

Circuit Satisfiability is NP-Complete

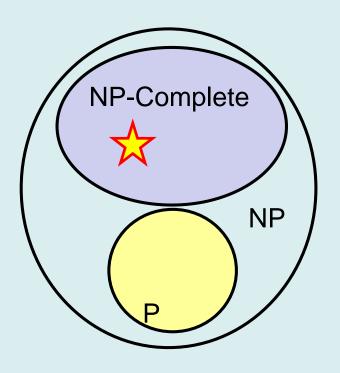


There are a whole bunch of other important problems which are NP-Complete



Cook's Theorem

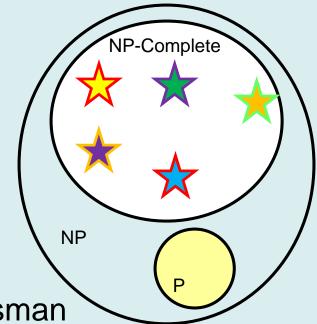
- Definition:
 - X is NP-Complete if:
 - X is in NP
 - For all Z in NP: $Z <_P X$
- There is an NP Complete problem
 - The Circuit Satisfiability
 Problem



Populating the NP-Completeness

Universe

- Circuit Sat
- 3-SAT <_P Independent Set
- 3-SAT <_P Vertex Cover
- Independent Set <_P Clique
- 3-SAT <_P Hamiltonian Circuit
- Hamiltonian Circuit <_P Traveling Salesman
- 3-SAT <_P Integer Linear Programming
- 3-SAT <_P Graph Coloring
- 3-SAT <_P 3 Dimensional Matching
- 3-SAT <_P Subset Sum
- Subset Sum <_P Scheduling with Release times and deadlines



Satisfiability

Literal: A Boolean variable or its negation.

$$x_i$$
 or $\overline{x_i}$

Clause: A disjunction of literals.

$$C_j = x_1 \vee \overline{x_2} \vee x_3$$

Conjunctive normal form: A propositional formula Φ that is the conjunction of clauses.

$$\Phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

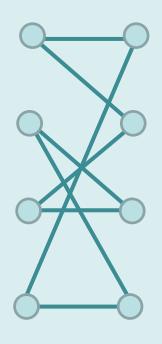
SAT: Given CNF formula Φ , does it have a satisfying truth assignment?

3-SAT: SAT where each clause contains exactly 3 literals.

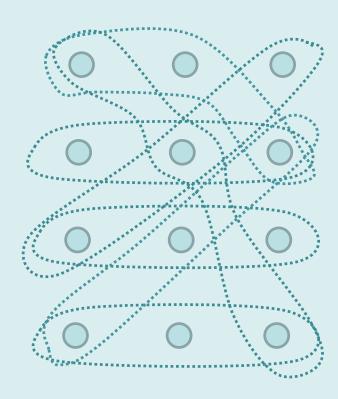
Ex:
$$(\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})$$

Yes: $x_1 = \text{true}, x_2 = \text{true } x_3 = \text{false}.$

Matching

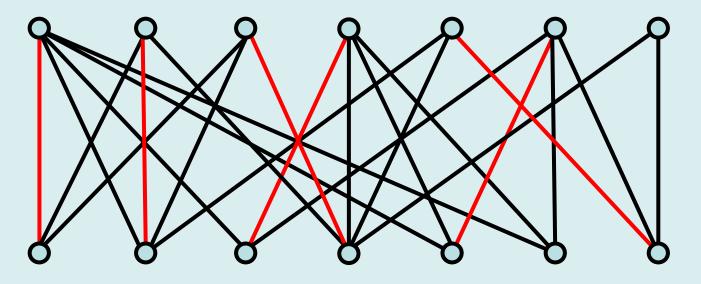


Two dimensional matching



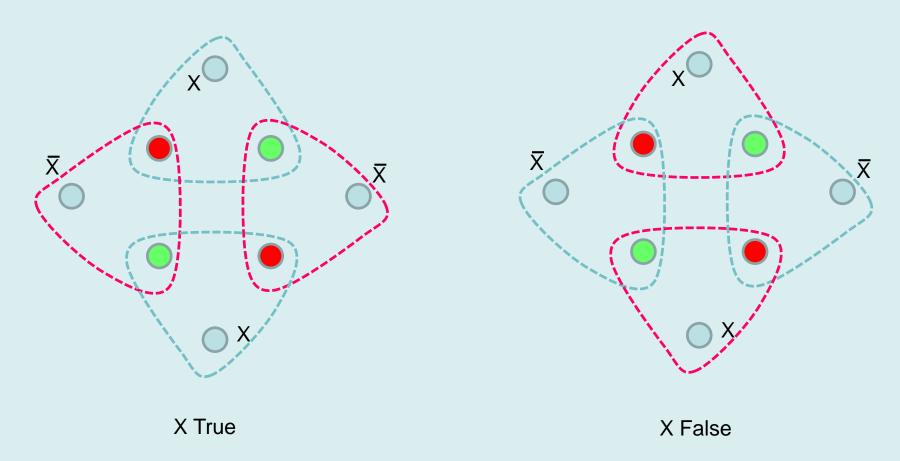
Three dimensional matching (3DM)

Augmenting Path Algorithm for Matching



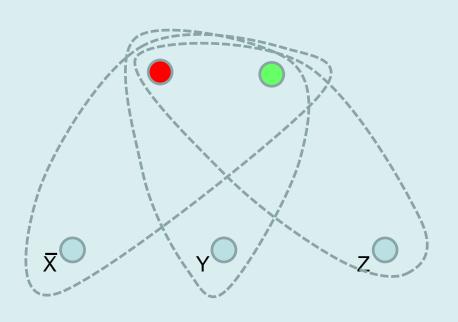
Find augmenting path in O(m) time n phases of augmentation O(nm) time algorithm for matching

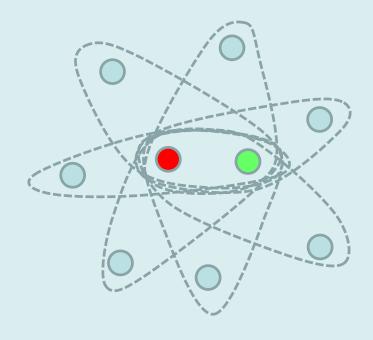
$3-SAT <_P 3DM$



Truth Setting Gadget

$3-SAT <_P 3DM$





Clause gadget for $(\overline{X} \text{ OR Y OR } Z)$

Garbage Collection Gadget (Many copies)

Exact Cover (sets of size 3) XC3

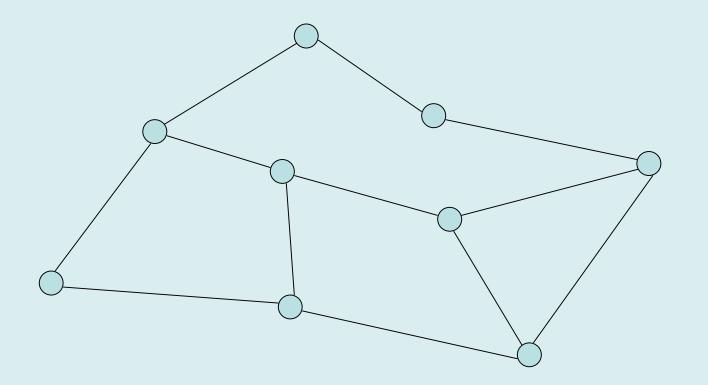
Given a collection of sets of size 3 of a domain of size 3N, is there a sub-collection of N sets that cover the sets

$$3DM <_P XC3$$

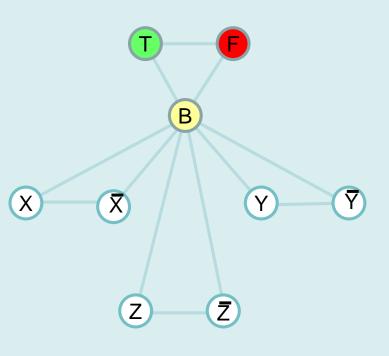
Graph Coloring

- NP-Complete
 - Graph K-coloring
 - Graph 3-coloring

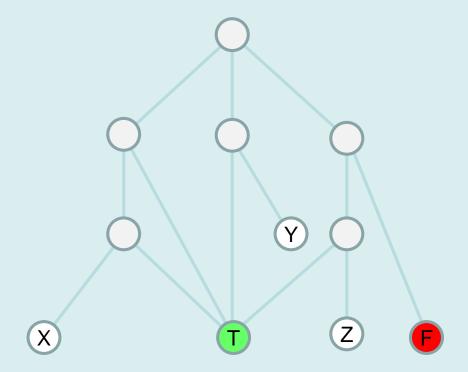
- Polynomial
 - Graph 2-Coloring



3-SAT <_P 3 Colorability



Truth Setting Gadget



Clause Testing Gadget

(Can be colored if at least one input is T)

Number Problems

- Subset sum problem
 - Given natural numbers w₁,..., w_n and a target number W, is there a subset that adds up to exactly W?

- Subset sum problem is NP-Complete
- Subset Sum problem can be solved in O(nW) time

XC3 <_P SUBSET SUM

Idea: Represent each set as a large integer, where the element x_i is encoded as Dⁱ where D is an integer

$$\{x_3, x_5, x_9\} => D^3 + D^5 + D^9$$

Does there exist a subset that sums to exactly $D^1 + D^2 + D^3 + ... + D^{n-1} + D^n$

Detail: How large is D? We need to make sure that we do not have any carries, so we can choose D = m+1, where m is the number of sets.

Integer Linear Programming

- Linear Programming maximize a linear function subject to linear constraints
- Integer Linear Programming require an integer solution
- NP Completeness reduction from 3-SAT

Use 0-1 variables for x_i's

Constraint for clause: $(x_1 \lor \overline{x_2} \lor \overline{x_2})$

$$x_1 + (1 - x_2) + (1 - x_3) > 0$$

Scheduling with release times and deadlines (RD-Sched)

- Tasks, $\{t_1, t_2, \dots t_n\}$
- Task t_j has a length l_j, release time r_j and deadline d_i
- Once a task is started, it is worked on without interruption until it is completed
- Can all tasks be completed satisfying constraints?

Subset Sum < P RD-Sched

- Subset Sum Problem
 - $-\{s_1, s_2, \ldots, s_N\}$, integer K_1
 - Does there exist a subset that sums to K₁?
 - Assume the total sums to K₂

Reduction

- Tasks {t₁, t₂, . . . t_N, x }
- t_i has length s_i, release 0, deadline K₂ + 1
- x has length 1, release K₁, deadline K₁ + 1

Friday: NP-Completeness and Beyond!

