

CSE 417

Algorithms and Complexity

Winter 2023
Lecture 24
NP-Completeness, Part II

Announcements

- Homework 9
- Exam practice problems on course homepage
- Final Exam: Monday, March 13, 8:30 AM

Fri, March 3	NP-Completeness: Overview, Definitions
Mon, March 6	NP-Completeness: Reductions
Wed, March 8	NP-Completeness: Problem Survey
Fri, March 10	Theory and Beyond NP-Completeness
Mon, March 13	Final Exam

Key Idea: Problem Reduction

- Use an algorithm for problem X to solve problem Y.
- This means that problem X is more difficult that problem Y
- Terminology: Y is reducible to X
- Notation: $\mathrm{Y}<_{p} \mathrm{X}$

The Universe

- P: Polynomial Time
- NP: Nondeterministic Polynomial Time
- Problems where a "yes" answer can be verified in polynomial time
- NP-Complete
- The hardest problems in NP

NP-Completeness

- If X is NP-Complete, Z is in $N P$ and $X<p$
- Z is NP-Complete
- Steve Cook got this started by finding the first NP-Complete problem

3-Coloring <p 4-Coloring

Starting NP-Complete Problems

- Circuit Satisfiability Problem
- Cook's Theorem
- Boolean Formula Satisfiability
- 3-SAT
- Maximum

Independent Set

setisfianility

Literal: A Boolean variable or its negation.

$$
x_{i} \text { or } \overline{x_{i}}
$$

Clause: A disjunction of literals.

$$
C_{j}=x_{1} \vee \overline{x_{2}} \vee x_{3}
$$

Conjunctive normal form: A propositional formula Φ that is the conjunction of clauses.

$$
\Phi=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}
$$

SAT: Given CNF formula Φ, does it have a satisfying truth assignment?

3-SAT: SAT where each clause contains exactly 3 literals.

Ex: $\quad\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right)$
Yes: $\mathrm{x}_{1}=$ true, $\mathrm{x}_{2}=$ true $\mathrm{x}_{3}=$ false.

3-SAT is NP-Complete

Circuit SAT $<p$ 3-SAT

Convert a circuit into a formula

Each gate is represented by a set of clauses

$$
\begin{aligned}
& \left(x_{1} \vee x_{1} \vee x_{1}\right) \wedge\left(x_{2} \vee x_{2} \vee x_{3}\right) \wedge \\
& \left(\overline{x_{2}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{1} \vee \overline{x_{4}}\right) \wedge \\
& \left(x_{1} \vee x_{1} \vee \overline{x_{5}}\right) \wedge\left(\overline{x_{1}} \vee x_{4} \vee x_{5}\right) \wedge \\
& \left(\overline{x_{0}} \vee \overline{x_{0}} \vee x_{1}\right) \wedge\left(\overline{x_{0}} \vee \overline{x_{0}} \vee x_{2}\right) \wedge \\
& \left(x_{0} \vee \overline{x_{1}} \vee \overline{x_{2}}\right)
\end{aligned}
$$

Independent Set

- Independent Set
- Graph $G=(V, E)$, a subset S of the vertices is independent if there are no edges between vertices in S

3 Satisfiability Reduces to Independent Set

Claim. $3-$ SAT \leq_{p} INDEPENDENT-SET.
Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENTSET that has an independent set of size k iff Φ is satisfiable.

Construction.

- G contains 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

Vertex Cover

- Vertex Cover
- Graph $G=(V, E)$, a subset S of the vertices is a vertex cover if every edge in E has at least one endpoint in S

IS <p VC

- Lemma: A set S is independent iff V - S is a vertex cover
- To reduce IS to VC, we show that we can determine if a graph has an independent set of size K by testing for a Vertex cover of size n - K

IS <p VC

Find a maximum independent set S

Show that V-S is a vertex cover

Clique

- Clique
- Graph $G=(V, E)$, a subset S of the vertices is a clique if there is an edge between every pair of vertices in S

Complement of a Graph

- Defn: $G^{\prime}=\left(V, E^{\prime}\right)$ is the complement of $G=(V, E)$ if (u, v) is in E^{\prime} iff (u, v) is not in E

(2)
(3)
(4)
(5)
(6)
(7)

3/6/2023

IS <p Clique

- Lemma: S is Independent in G iff S is a Clique in the complement of G
- To reduce IS to Clique, we compute the complement of the graph. The complement has a clique of size K iff the original graph has an independent set of size K

Hamiltonian Circuit Problem

- Hamiltonian Circuit - a simple cycle including all the vertices of the graph

Thm: Hamiltonian Circuit is NP Complete

- Reduction from 3-SAT

Page 475 in text

Clause Gadget

$x_{1} \vee x_{2} \vee x_{3}$
X_{1} Group
X_{2} Group
X_{3} Group

Hamiltonian Path Problem

- Hamiltonian Path - a simple path including all the vertices of the graph

Reduce Hamiltonian Circuit to Hamiltonian Path

G_{2} has a Hamiltonian Path iff G_{1} has a Hamiltonian Circuit

Traveling Salesman Problem

- Given a complete graph with edge weights, determine the shortest tour that includes all of the vertices (visit each vertex exactly once, and get back to the starting point)

Find the minimum cost tour

Thm: $\mathrm{HC}<$ р TSP

