

CSE 417 Algorithms and Complexity

Winter 2023 Lecture 24 NP-Completeness, Part II

Announcements

- Homework 9
- Exam practice problems on course homepage
- Final Exam: Monday, March 13, 8:30 AM

Fri, March 3	NP-Completeness: Overview, Definitions
Mon, March 6	NP-Completeness: Reductions
Wed, March 8	NP-Completeness: Problem Survey
Fri, March 10	Theory and Beyond NP-Completeness
Mon, March 13	Final Exam

Key Idea: Problem Reduction

- Use an algorithm for problem X to solve problem Y.
 - This means that problem X is more difficult that problem Y
- Terminology: Y is reducible to X
 - Notation: $Y <_P X$

The Universe

- P: Polynomial Time
- NP: Nondeterministic Polynomial Time
 - Problems where a "yes" answer can be verified in polynomial time
- NP-Complete
 - The hardest problems in NP

NP-Completeness

- If X is NP-Complete,
 Z is in NP and X <_P Z
 Z is NP-Complete
- Steve Cook got this started by finding the first NP-Complete problem

Starting NP-Complete Problems

- Circuit Satisfiability Problem
 - Cook's Theorem
- Boolean Formula Satisfiability
 - 3-SAT
- Maximum
 Independent Set

Satisfiability

Literal:	A Boolean variable or its negation.
----------	-------------------------------------

Clause: A disjunction of literals.

Conjunctive normal form: A propositional formula Φ that is the conjunction of clauses.

 $C_j = x_1 \vee \overline{x_2} \vee x_3$

 x_i or x_i

$$\Phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

SAT: Given CNF formula Φ , does it have a satisfying truth assignment?

3-SAT: SAT where each clause contains exactly 3 literals.

Ex:
$$(\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})$$

Yes: $x_1 = true$, $x_2 = true x_3 = false$.

3/6/2023

3-SAT is NP-Complete

Circuit SAT <_P 3-SAT

Convert a circuit into a formula

 x_0 x_1 x_2 x_5 x_4 x_4 x_3 x_5 x_5 x_7 x_4 x_2 x_3 x_5 x_7 x_1 x_2 x_3 x_5 x_7 x_1 x_2 x_3 x_5 x_7 x_7 x_1 x_2 x_3 x_5 x_7 x_7 x_1 x_2 x_3 x_5 x_7 x_7 x_1 x_2 x_3 x_5 x_5

Output = 1

Each gate is represented by a set of clauses

$$\begin{array}{l} (x_1 \lor x_1 \lor x_1) \land (x_2 \lor x_2 \lor x_3) \land \\ (\overline{x_2} \lor \overline{x_2} \lor \overline{x_3}) \land (x_1 \lor x_1 \lor \overline{x_4}) \land \\ (x_1 \lor x_1 \lor \overline{x_5}) \land (\overline{x_1} \lor x_4 \lor x_5) \land \\ (\overline{x_0} \lor \overline{x_0} \lor x_1) \land (\overline{x_0} \lor \overline{x_0} \lor x_2) \land \\ (x_0 \lor \overline{x_1} \lor \overline{x_2}) \end{array}$$

Independent Set

- Independent Set
 - Graph G = (V, E), a subset S of the vertices is independent if there are no edges between vertices in S

3 Satisfiability Reduces to Independent Set

Claim. 3-SAT \leq_{P} INDEPENDENT-SET.

Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff Φ is satisfiable.

Construction.

G

k = 3

- G contains 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

12

Vertex Cover

Vertex Cover

 Graph G = (V, E), a subset S of the vertices is a vertex cover if every edge in E has at least one endpoint in S

 $IS <_{P} VC$

 Lemma: A set S is independent iff V-S is a vertex cover

 To reduce IS to VC, we show that we can determine if a graph has an independent set of size K by testing for a Vertex cover of size n - K

$IS <_P VC$

Find a maximum independent set S

Show that V-S is a vertex cover

Clique

• Clique

 Graph G = (V, E), a subset S of the vertices is a clique if there is an edge between every pair of vertices in S

Complement of a Graph

 Defn: G'=(V,E') is the complement of G=(V,E) if (u,v) is in E' iff (u,v) is not in E

IS <_P Clique

 Lemma: S is Independent in G iff S is a Clique in the complement of G

 To reduce IS to Clique, we compute the complement of the graph. The complement has a clique of size K iff the original graph has an independent set of size K

Hamiltonian Circuit Problem

• Hamiltonian Circuit – a simple cycle including all the vertices of the graph

Thm: Hamiltonian Circuit is NP Complete

Reduction from 3-SAT

Page 475 in text

3/6/2023

CSE 417

Clause Gadget

Hamiltonian Path Problem

 Hamiltonian Path – a simple path including all the vertices of the graph

Reduce Hamiltonian Circuit to Hamiltonian Path

G₂ has a Hamiltonian Path iff G₁ has a Hamiltonian Circuit

Traveling Salesman Problem

 Given a complete graph with edge weights, determine the shortest tour that includes all of the vertices (visit each vertex exactly once, and get back to the starting point)

Find the minimum cost tour

