

CSE 417 Algorithms and Complexity

Winter 2023 Lecture 23 NP-Completeness

Announcements

- · Homework 9
- · Exam practice problems on course homepage
- · Final Exam: Monday, March 13, 8:30 AM

Fri, March 3	NP-Completeness: Overview, Definitions
Mon, March 6	NP-Completeness: Reductions
Wed, March 8	NP-Completeness: Problem Survey
Fri, March 10	Theory and Beyond NP-Completeness
Mon, March 13	Final Exam

Problem Reduction

- · Reduce Problem A to Problem B
 - Convert an instance of Problem A to an instance of Problem R
 - Use a solution of Problem B to get a solution to Problem A
- Practical
 - Use a program for Problem B to solve Problem A
- Theoretical
 - Show that Problem B is at least as hard as Problem A

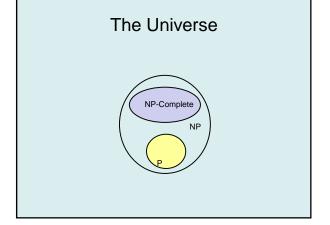
Problem Reduction Maximum Spanning Trees

NP Completeness

Algorithms vs. Lower bounds

- · Algorithmic Theory
 - What we can compute
 - I can solve problem X with resources R
 - Proofs are almost always to give an algorithm that meets the resource bounds
- Lower bounds
 - How do we show that something can't be done?

Theory of NP Completeness



Polynomial Time

- P: Class of problems that can be solved in polynomial time
 - Corresponds with problems that can be solved efficiently in practice
 - Right class to work with "theoretically"

Decision Problems

- Theory developed in terms of yes/no problems
 - Independent set
 - Given a graph G and an integer K, does G have an independent set of size at least K
 - Shortest Path
 - Given a graph G with edge lengths, a start vertex s, and end vertex t, and an integer K, does the graph have a path between s and t of length at most K

What is NP?

- Problems solvable in non-deterministic polynomial time . . .
- Problems where "yes" instances have polynomial time checkable certificates

Certificate examples

- · Independent set of size K
 - The Independent Set
- Satifisfiable formula
 - Truth assignment to the variables
- · Hamiltonian Circuit Problem
 - A cycle including all of the vertices
- · K-coloring a graph
 - Assignment of colors to the vertices

Certifiers and Certificates: 3-Satisfiability

SAT: Does a given CNF formula have a satisfying formula

Certificate: An assignment of truth values to the n boolean variables

Certifier: Check that each clause has at least one true literal,

instance s

$$\left(\overline{x_1} \vee x_2 \vee x_3\right) \wedge \left(x_1 \vee \overline{x_2} \vee x_3\right) \wedge \left(x_1 \vee x_2 \vee x_4\right) \wedge \left(\overline{x_1} \vee \overline{x_3} \vee \overline{x_4}\right)$$

certificate t

 $x_1 = 1$, $x_2 = 1$, $x_3 = 0$, $x_4 = 1$

Certifiers and Certificates: Hamiltonian Cycle HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

Polynomial time reductions

- · Y is Polynomial Time Reducible to X
 - Solve problem Y with a polynomial number of computation steps and a polynomial number of calls to a black box that solves X
 - Notations: Y <_P X
- Usually, this is converting an input of Y to an input for X, solving X, and then converting the answer back

Composability Lemma

• If $X <_P Y$ and $Y <_P Z$ then $X <_P Z$

Lemmas

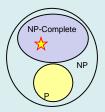
- Suppose Y <_P X. If X can be solved in polynomial time, then Y can be solved in polynomial time.
- Suppose Y <_P X. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

NP-Completeness

- · A problem X is NP-complete if
 - -X is in NP
 - For every Y in NP, $Y <_P X$
- X is a "hardest" problem in NP
- If X is NP-Complete, Z is in NP and X <_P Z
 - Then Z is NP-Complete

Cook's Theorem

There is an NP Complete problem
 The Circuit Satisfiability Problem

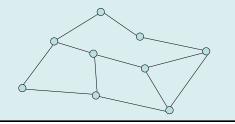


Populating the NP-Completeness Universe

- Circuit Sat <_P 3-SAT
- 3-SAT <_P Independent Set
- 3-SAT <P Vertex Cover
- Independent Set <_P Clique
- 3-SAT < P Hamiltonian Circuit
- Hamiltonian Circuit <p Traveling Salesman
- 3-SAT <_P Integer Linear Programming
- 3-SAT $<_P$ Graph Coloring
- 3-SAT <_P Subset Sum
- Subset Sum <_P Scheduling with Release times and deadlines

Graph Coloring

- NP-CompleteGraph 3-coloring
- Polynomial
 - Graph 2-Coloring



Graph 4-Coloring

- Given a graph G, can G be colored with 4 colors?
- Prove 4-Coloring is NP Complete
- Proof: 3-Coloring <p 4-Coloring
- Show that you can 3-Color a graph if you have an algorithm to 4-Color a graph

3-Coloring <_P 4-Coloring

