

CSE 417

Algorithms and Complexity

Winter 2023
Lecture 23
NP-Completeness

Announcements

- Homework 9
- Exam practice problems on course homepage
- Final Exam: Monday, March 13, 8:30 AM

Fri, March 3	NP-Completeness: Overview, Definitions
Mon, March 6	NP-Completeness: Reductions
Wed, March 8	NP-Completeness: Problem Survey
Fri, March 10	Theory and Beyond NP-Completeness
Mon, March 13	Final Exam

Problem Reduction

- Reduce Problem A to Problem B
- Convert an instance of Problem A to an instance of Problem B
- Use a solution of Problem B to get a solution to Problem A
- Practical
- Use a program for Problem B to solve Problem A
- Theoretical
- Show that Problem B is at least as hard as Problem A

Problem Reduction

 Maximum Spanning Trees

NP Completeness

I can't find an efficient algorithm, but neither can all these famous people.

Algorithms vs. Lower bounds

- Algorithmic Theory
- What we can compute
- I can solve problem X with resources R
- Proofs are almost always to give an algorithm that meets the resource bounds
- Lower bounds
- How do we show that something can't be done?

Theory of NP Completeness

The Universe

Polynomial Time

- P: Class of problems that can be solved in polynomial time
- Corresponds with problems that can be solved efficiently in practice
- Right class to work with "theoretically"

Decision Problems

- Theory developed in terms of yes/no problems
- Independent set
- Given a graph G and an integer K, does G have an independent set of size at least K
- Shortest Path
- Given a graph G with edge lengths, a start vertex s, and end vertex t, and an integer K, does the graph have a path between s and t of length at most K

What is NP?

- Problems solvable in non-deterministic polynomial time . . .
- Problems where "yes" instances have polynomial time checkable certificates

Certificate examples

- Independent set of size K
- The Independent Set
- Satifisfiable formula
- Truth assignment to the variables
- Hamiltonian Circuit Problem
- A cycle including all of the vertices
- K-coloring a graph
- Assignment of colors to the vertices

Certifiers and Certificates: 3-Satisfiability

SAT: Does a given CNF formula have a satisfying formula
Certificate: An assignment of truth values to the n boolean variables
Certifier: Check that each clause has at least one true literal,
instance s

$$
\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)
$$

certificate t

$$
x_{1}=1, x_{2}=1, x_{3}=0, x_{4}=1
$$

Certifiers and Certificates: Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph $G=(V, E)$, does there exist a simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

Polynomial time reductions

- Y is Polynomial Time Reducible to X
- Solve problem Y with a polynomial number of computation steps and a polynomial number of calls to a black box that solves X
- Notations: $\mathrm{Y}<_{\mathrm{p}} \mathrm{X}$
- Usually, this is converting an input of Y to an input for X, solving X, and then converting the answer back

Composability Lemma

- If $X<_{p} Y$ and $Y<_{p} Z$ then $X<_{p} Z$

Lemmas

- Suppose $Y<_{p} X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.
- Suppose $Y<_{p} X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

NP-Completeness

- A problem X is NP-complete if
$-X$ is in NP
- For every Y in NP, $Y<_{p} X$
- X is a "hardest" problem in NP
- If X is NP-Complete, Z is in NP and $X<_{p} Z$ - Then Z is NP-Complete

Cook's Theorem

- There is an NP Complete problem
- The Circuit Satisfiability Problem

Populating the NP-Completeness

 Universe- Circuit Sat <p 3-SAT
- 3-SAT <p Independent Set
- 3-SAT <p Vertex Cover
- Independent Set $<_{p}$ Clique
- 3-SAT < ${ }_{p}$ Hamiltonian Circuit
- Hamiltonian Circuit $<_{p}$ Traveling Salesman
- 3-SAT $<_{p}$ Integer Linear Programming
- 3-SAT $<_{p}$ Graph Coloring
- 3-SAT $<_{p}$ Subset Sum
- Subset Sum $<_{p}$ Scheduling with Release times and deadlines

Graph Coloring

- NP-Complete
- Graph 3-coloring
- Polynomial
- Graph 2-Coloring

Graph 4-Coloring

- Given a graph G , can G be colored with 4 colors?
- Prove 4-Coloring is NP Complete
- Proof: 3-Coloring <p 4-Coloring
- Show that you can 3-Color a graph if you have an algorithm to 4-Color a graph

3-Coloring <p 4-Coloring

Garey and Johnson

P vs. NP Question

