CSE 417
Algorithms and Complexity

Announcements

Divide and Conquer

* Algorithm paradigm
— Break problems into subproblems until easy to
solve

— Work is split between “divide”, “combine”, and
“base’”” components
* Standard examples
— MergeSort and QuickSort

* Analysis tool: Recurrences

Matrix Multiplication

* NXN Matrix, AB=C

for (int i = 0; i < n; i++)
for (int j = 0; Jj < n; j++) {
int t = 0;
for (int k = 0; k < n; k++)
t =t + A[i] [k] * B[k][]j];
Clil[3] = t;

Recursive Matrix Multiplication

Multiply 2 x 2 Matrices: AN x N matrix can be viewed as
Ir s|_|la bl [e g a 2 x 2 matrix with entries that
[t ul = lc d |f hl are (N/2) x (N/2) matrices.

The recursive matrix
r =ae + bf multiplication algorithm
— recursively multiplies the
S __ 2 13 (N/2) x (N/2) matrices and
t = ce+df combines them using the
u=cg+dh equations for multiplying 2 x 2
matrices

Recursive Matrix Multiplication

* How many recursive calls are
made at each level?

* How much work in
combining the results?

* What is the recurrence?




What is the run time for the recursive Matrix
Multiplication Algorithm?

* Recurrence:

Strassen’s Algorithm

Where:
Multiply 2 x 2 Matrices: = (b— )+ h
Ir s|_la bl |e g py= (b - d)(f+h)
[t ul |c d [f h p,= (a+d)(e + h)

ps=(a-c)(e +9g)
r=p;+P,—PstPs p.= (a + b)h
S=P;*Ps ps=a(g —h)
t=ps+p; ps=d(f —e)
U=p;-Ps+ps-p; p,=(c +d)e

From Aho, Hopcroft, Ullman 1974

Recurrence for Strassen’s Algorithms

e T(n)=7T(n/2) + cn?
* What is the runtime?

log, 7 = 2.8073549221

Strassen’s Algorithms

* Treat n x n matrices as 2 x 2 matrices of n/2 x n/2
submatrices

* Use Strassen’s trick to multiply 2 x 2 matrices with 7
multiplies

* Base case standard multiplication for single entries
* Recurrence: T(n)=7T(n/2) + cn?
* Solution is O(7'°e")= O(n'°87) which is about O(n28%7)

Inversion Problem

* leta,,...a,beapermutationofl..n
* (a, ) isaninversionifi<jand a; > a;

4,6,1,7,3,2,5

* Problem: given a permutation, count the number of
inversions

* This can be done easily in O(n?) time
— Can we do better?

Application

* Counting inversions can be use to measure
how close ranked preferences are
— People rank 20 movies, based on their rankings

you cluster people who like that same type of
movie




Counting Inversions

|11‘12‘4 ‘1 ‘7 ‘2 ‘3 ‘15‘9 ‘5 ‘16‘8 ‘6 \13\10\14|

Count inversions on lower half
Count inversions on upper half

Count the inversions between the halves

Count the Inversions
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Problem — how do we count inversions between
sub problems in O(n) time?

* Solution — Count inversions while merging

[t ]2 [3 Ja J7 Ju]i2]ss] [5 [6 [8 Jo [10]13]14]16]

Standard merge algorithm — add to inversion count
when an element is moved from the upper array to the
solution

Use the merge algorithm to count
inversions

[ [e [l 2 [s [7 [ss]

[5 [8 [o [16]

Indicate. the_number of inversions for each
element detected when meriing

Inversions

* Counting inversions between two sorted lists
— O(1) per element to count inversions

D [x [x e [ [x I Jx | [y ly [y [y [y]v]y]y]

[zlzfzfe]z]zfzfez]z]z]e]z]z]z]c]

* Algorithm summary
— Satisfies the “Standard recurrence”
—T(n)=2T(n/2) +cn

Computing the Median

* Given n numbers, find the number of rank n/2

* One approach is sorting
— Sort the elements, and choose the middle one
— Can you do better?

* Selection, given n numbers and an integer k,
find the k-th largest




Select(A, k)

Select(A, kY
Choose element x from A
S;={yinAly<x}
S,={yinAly>x}
S;={yinAly=x}
if (IS;] >= k)
return Select(S,, k)
else if (|S,| + |S3| >= k)
return x
else
return Select(Sy, k - |S,] - [Ss])

BFPRT Algorithm

* Avery clever choose algorithm . . .

* Deterministic algorithm that guarantees
that |S;| <3n/4and |S,| <3n/4

¢ Actual recurrence is:

T(n) < T(3n/4) + T(n/5) +cn

Recursive Multiplication Algorithm (First
attempt)
X = Xg 272 + X4
y=y12"+y,
Xy = (%3 272 + Xg) (y1 272 + Yo)

= X1Y1 2" + (XY + Xo¥1)2™2 + XoYo

Recurrence:

Run time:

Deterministic Selection

* What is the run time of select if we can
guarantee that choose finds an x such that
[S;| <3n/4 and |S,| < 3n/4in O(n) time

* What is the run time of select if we can
guarantee that choose finds an x such that
[S;] <3n/4 and |S,| < 3n/4in O(n) time

Integer Arithmetic

9715480283945084383094856701043643845790217965702956767
+ 1242431098234099057329075097179898430928779579277597977

Runtime for standard algorithm to add two n digit numbers:

2095067093034680994318596846868779409766717133476767930
X 5920175091777634709677679342929097012308956679993010921

Runtime for standard algorithm to multiply-two: n digit numbers:

Simple algebra

X =X, 272 + X,
y=y:12" +y,

Xy = Xpy; 2"+ (%Yo * Xo¥1) 272 + Xo¥o

P =X + X)) (Y1 + Yo) = X1Y1 *+ X1Yo + XoY1 + XoYo



http://en.wikipedia.org/wiki/File:VaughanPratt.JPG

Karatsuba’s Algorithm

Multiply n-digit integers x and y
Let x=x,2"2+xy,and y=y, 2"2 +y,
Recursively compute

a=Xyy,
b = Xo¥o

P = (X + Xo)(Y1 + Yo)
Return a2" + (p —a —b)2"2 + b

Recurrence: T(n) = 3T(n/2) + cn




