
1

CSE 417
Algorithms and Complexity

Winter 2023
Lecture 17

Divide and Conquer

2/15/2023 CSE 417 1

Announcements

2/15/2023 CSE 417 2

Divide and Conquer

• Algorithm paradigm

– Break problems into subproblems until easy to
solve

– Work is split between “divide”, “combine”, and
“base’’ components

• Standard examples

– MergeSort and QuickSort

• Analysis tool: Recurrences

2/15/2023 CSE 417 3

Matrix Multiplication

• N X N Matrix, A B = C

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++) {

int t = 0;

for (int k = 0; k < n; k++)

t = t + A[i][k] * B[k][j];

C[i][j] = t;

}

2/15/2023 CSE 417 4

Recursive Matrix Multiplication

Multiply 2 x 2 Matrices:

| r s | | a b| |e g|

| t u | | c d| | f h|

r = ae + bf

s = ag + bh

t = ce + df

u = cg + dh

A N x N matrix can be viewed as

a 2 x 2 matrix with entries that

are (N/2) x (N/2) matrices.

The recursive matrix

multiplication algorithm

recursively multiplies the

(N/2) x (N/2) matrices and

combines them using the

equations for multiplying 2 x 2

matrices

=

2/15/2023 CSE 417 5

Recursive Matrix Multiplication

• How many recursive calls are
made at each level?

• How much work in
combining the results?

• What is the recurrence?

2/15/2023 CSE 417 6

2

What is the run time for the recursive Matrix
Multiplication Algorithm?

• Recurrence:

2/15/2023 CSE 417 7

Strassen’s Algorithm

Multiply 2 x 2 Matrices:

| r s | | a b| |e g|

| t u| | c d| | f h|
=

r = p1 + p2 – p4 + p6

s = p4 + p5

t = p6 + p7

u = p2 - p3 + p5 - p7

Where:

p1 = (b – d)(f + h)

p2= (a + d)(e + h)

p3= (a – c)(e + g)

p4= (a + b)h

p5= a(g – h)

p6= d(f – e)

p7= (c + d)e

From Aho, Hopcroft, Ullman 1974
2/15/2023 CSE 417 8

Recurrence for Strassen’s Algorithms

• T(n) = 7 T(n/2) + cn2

• What is the runtime?

log2 7 = 2.80735492212/15/2023 CSE 417 9

Strassen’s Algorithms

• Treat n x n matrices as 2 x 2 matrices of n/2 x n/2
submatrices

• Use Strassen’s trick to multiply 2 x 2 matrices with 7
multiplies

• Base case standard multiplication for single entries

• Recurrence: T(n) = 7 T(n/2) + cn2

• Solution is O(7log n)= O(nlog 7) which is about O(n2.807)

2/15/2023 CSE 417 10

Inversion Problem

• Let a1, . . . an be a permutation of 1 . . n

• (ai, aj) is an inversion if i < j and ai > aj

• Problem: given a permutation, count the number of
inversions

• This can be done easily in O(n2) time

– Can we do better?

4, 6, 1, 7, 3, 2, 5

2/15/2023 CSE 417 11

Application

• Counting inversions can be use to measure
how close ranked preferences are

– People rank 20 movies, based on their rankings
you cluster people who like that same type of
movie

2/15/2023 CSE 417 12

3

Counting Inversions

11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14

Count inversions on lower half

Count inversions on upper half

Count the inversions between the halves

2/15/2023 CSE 417 13

11 12 4 1 7 2 3 15

11 12 4 1 7 2 3 15

9 5 16 8 6 13 10 14

9 5 16 8 6 13 10 14

Count the Inversions

11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14

5 12 3

15 10

19

8 6

44

2/15/2023 CSE 417 14

Problem – how do we count inversions between
sub problems in O(n) time?

• Solution – Count inversions while merging

1 2 3 4 7 11 12 15 5 6 8 9 10 13 14 16

Standard merge algorithm – add to inversion count

when an element is moved from the upper array to the

solution

2/15/2023 CSE 417 15

Use the merge algorithm to count
inversions

1 4 11 12 2 3 7 15

5 8 9 16 6 10 13 14

Indicate the number of inversions for each

element detected when merging
2/15/2023 CSE 417 16

Inversions

• Counting inversions between two sorted lists
– O(1) per element to count inversions

• Algorithm summary
– Satisfies the “Standard recurrence”

– T(n) = 2 T(n/2) + cn

x x x x x x x x y y y y y y y y

z z z z z z z z z z z z z z z z

2/15/2023 CSE 417 17

Computing the Median

• Given n numbers, find the number of rank n/2

• One approach is sorting

– Sort the elements, and choose the middle one

– Can you do better?

• Selection, given n numbers and an integer k,
find the k-th largest

2/15/2023 CSE 417 18

4

Select(A, k)

Select(A, k){

Choose element x from A

S1 = {y in A | y < x}

S2 = {y in A | y > x}

S3 = {y in A | y = x}

if (|S2| >= k)

return Select(S2, k)

else if (|S2| + |S3| >= k)

return x

else

return Select(S1, k - |S2| - |S3|)

}

S1 S3 S2

2/15/2023 CSE 417 19

Deterministic Selection

• What is the run time of select if we can
guarantee that choose finds an x such that
|S1| < 3n/4 and |S2| < 3n/4 in O(n) time

• What is the run time of select if we can
guarantee that choose finds an x such that
|S1| < 3n/4 and |S2| < 3n/4 in O(n) time

2/15/2023 CSE 417 20

BFPRT Algorithm

• A very clever choose algorithm . . .

• Deterministic algorithm that guarantees
that |S1| < 3n/4 and |S2| < 3n/4

• Actual recurrence is:

1978

19951986

2002

T(n) ≤ T(3n/4) + T(n/5) + c n

2/15/2023 CSE 417 21

Integer Arithmetic

9715480283945084383094856701043643845790217965702956767

+ 1242431098234099057329075097179898430928779579277597977

2095067093034680994318596846868779409766717133476767930

X 5920175091777634709677679342929097012308956679993010921

Runtime for standard algorithm to add two n digit numbers:

Runtime for standard algorithm to multiply two n digit numbers:2/15/2023 CSE 417 22

Recursive Multiplication Algorithm (First
attempt)

x = x1 2
n/2 + x0

y = y1 2
n/2 + y0

xy = (x1 2
n/2 + x0) (y1 2

n/2 + y0)

= x1y1 2n + (x1y0 + x0y1)2
n/2 + x0y0

Recurrence:

Run time:

2/15/2023 CSE 417 23

Simple algebra

x = x1 2
n/2 + x0

y = y1 2
n/2 + y0

xy = x1y1 2n + (x1y0 + x0y1) 2
n/2 + x0y0

p = (x1 + x0)(y1 + y0) = x1y1 + x1y0 + x0y1 + x0y0

2/15/2023 CSE 417 24

http://en.wikipedia.org/wiki/File:VaughanPratt.JPG

5

Karatsuba’s Algorithm

Multiply n-digit integers x and y

Let x = x1 2n/2 + x0 and y = y1 2n/2 + y0

Recursively compute

a = x1y1

b = x0y0

p = (x1 + x0)(y1 + y0)

Return a2n + (p – a – b)2n/2 + b

Recurrence: T(n) = 3T(n/2) + cn

log2 3 = 1.58496250073…2/15/2023 CSE 417 25

