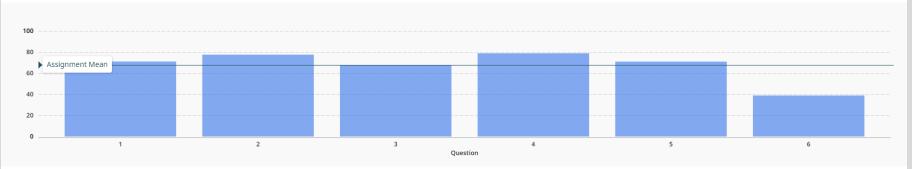
CSE 417 Algorithms and Complexity

Winter 2023 Lecture 17 Divide and Conquer

Announcements

• Midterm stats (out of 60)

– Mean: 40.46, Median: 42.0, Std Dev: 11.23



- Today: Divide and Conquer
- Friday: Dynamic Programming
- Monday: Presidents' Day

Divide and Conquer

- Algorithm paradigm
 - Break problems into subproblems until easy to solve
 - Work is split between "divide", "combine", and "base" components
- Standard examples
 - MergeSort and QuickSort
- Analysis tool: Recurrences

Matrix Multiplication

• N X N Matrix, A B = C

```
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) {
    int t = 0;
    for (int k = 0; k < n; k++)
        t = t + A[i][k] * B[k][j];
        C[i][j] = t;
}</pre>
```

Recursive Matrix Multiplication

Multiply 2 x 2 Matrices: | r s | = | a b | | e g || t u | = | c d | | f h |

$$r = ae + bf$$

$$s = ag + bh$$

$$t = ce + df$$

$$u = cg + dh$$

A N x N matrix can be viewed as a 2 x 2 matrix with entries that are $(N/2) \times (N/2)$ matrices.

The recursive matrix multiplication algorithm recursively multiplies the $(N/2) \times (N/2)$ matrices and combines them using the equations for multiplying 2 x 2 matrices

Recursive Matrix Multiplication

- How many recursive calls are made at each level?
- How much work in combining the results?
- What is the recurrence?

What is the run time for the recursive Matrix Multiplication Algorithm?

• Recurrence:

Strassen's Algorithm

Multiply 2 x 2 Matrices: $\begin{vmatrix} r & s \end{vmatrix} = \begin{vmatrix} a & b \end{vmatrix} \begin{vmatrix} e & g \end{vmatrix}$ $\begin{vmatrix} t & u \end{vmatrix} = \begin{vmatrix} c & d \end{vmatrix} \begin{vmatrix} f & h \end{vmatrix}$ $r = p_1 + p_2 - p_4 + p_6$ $s = p_4 + p_5$ $t = p_6 + p_7$ $u = p_2 - p_3 + p_5 - p_7$

Where:

- $p_1 = (b d)(f + h)$ $p_2 = (a + d)(e + h)$
- $p_3 = (a c)(e + g)$
- $p_4 = (a + b)h$
- $p_5 = a(g h)$
- $p_6 = d(f e)$
- $p_7 = (c + d)e$

Recurrence for Strassen's Algorithms

- $T(n) = 7 T(n/2) + cn^2$
- What is the runtime?

Strassen's Algorithms

- Treat n x n matrices as 2 x 2 matrices of n/2 x n/2 submatrices
- Use Strassen's trick to multiply 2 x 2 matrices with 7 multiplies
- Base case standard multiplication for single entries
- Recurrence: $T(n) = 7 T(n/2) + cn^2$
- Solution is $O(7^{\log n}) = O(n^{\log 7})$ which is about $O(n^{2.807})$

Inversion Problem

- Let $a_1, \ldots a_n$ be a permutation of $1 \ldots n$
- (a_i, a_j) is an inversion if i < j and $a_i > a_j$

4, 6, 1, 7, 3, 2, 5

- Problem: given a permutation, count the number of inversions
- This can be done easily in O(n²) time
 - Can we do better?

Application

- Counting inversions can be use to measure how close ranked preferences are
 - People rank 20 movies, based on their rankings you cluster people who like that same type of movie

Counting Inversions

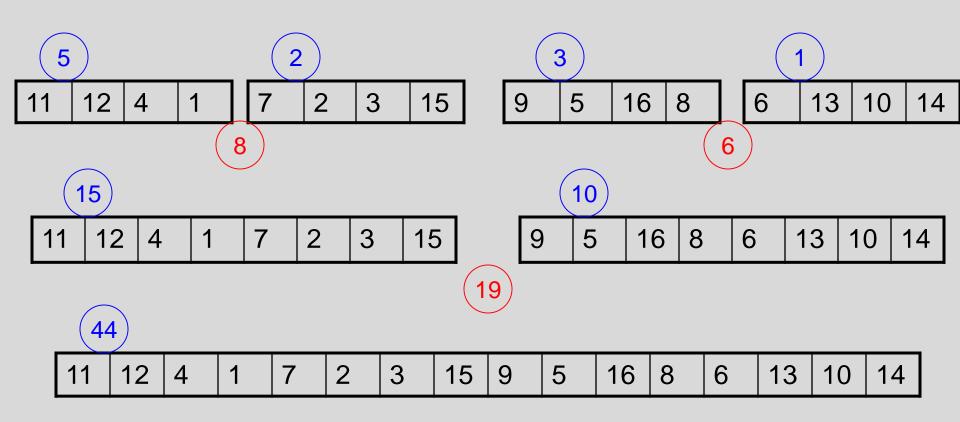
11	12 4	1	7	2	3	15	9	5	16	8	6	13	10	14	
----	------	---	---	---	---	----	---	---	----	---	---	----	----	----	--

Count inversions on lower half

Count inversions on upper half

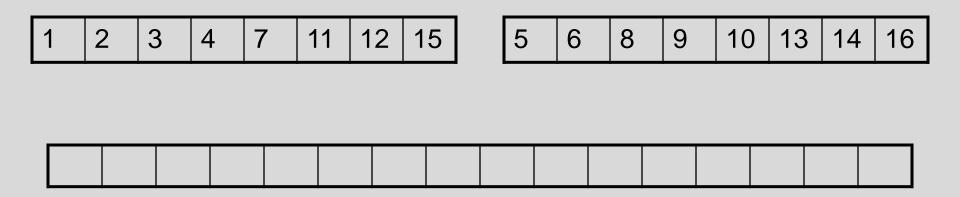
Count the inversions between the halves

Count the Inversions



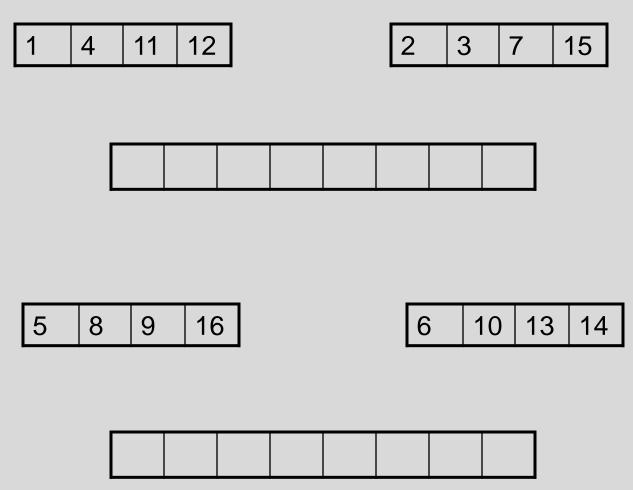
Problem – how do we count inversions between sub problems in O(n) time?

• Solution – Count inversions while merging



Standard merge algorithm – add to inversion count when an element is moved from the upper array to the solution

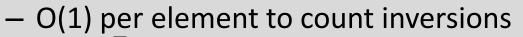
Use the merge algorithm to count inversions

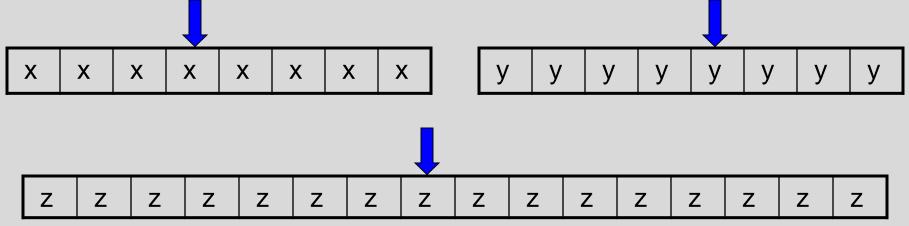


Indicate the number of inversions for each CSE 417 element detected when merging

Inversions

Counting inversions between two sorted lists





- Algorithm summary
 - Satisfies the "Standard recurrence"
 - T(n) = 2 T(n/2) + cn

Computing the Median

- Given n numbers, find the number of rank n/2
- One approach is sorting
 - Sort the elements, and choose the middle one
 - Can you do better?
- *Selection,* given n numbers and an integer k, find the k-th largest

Select(A, k)

```
Select(A, k){

Choose element x from A

S_1 = \{y \text{ in } A \mid y < x\}

S_2 = \{y \text{ in } A \mid y > x\}

S_3 = \{y \text{ in } A \mid y = x\}

if (|S_2| \ge k)

return Select(S<sub>2</sub>, k)

else if (|S_2| + |S_3| \ge k)

return x

else

return Select(S<sub>1</sub>, k - |S<sub>2</sub>| - |S<sub>3</sub>|)
```


}

Deterministic Selection

What is the run time of select if we can guarantee that choose finds an x such that |S₁| < 3n/4 and |S₂| < 3n/4 in O(n) time

What is the run time of select if we can guarantee that choose finds an x such that |S₁| < 3n/4 and |S₂| < 3n/4 in O(n) time

BFPRT Algorithm

- 1986
- A very clever choose algorithm . . .

• Deterministic algorithm that guarantees that $|S_1| < 3n/4$ and $|S_2| < 3n/4$

• Actual recurrence is:

 $T(n) \le T(3n/4) + T(n/5) + c n$

1978

Integer Arithmetic

9715480283945084383094856701043643845790217965702956767 + 1242431098234099057329075097179898430928779579277597977

Runtime for standard algorithm to add two n digit numbers:

2095067093034680994318596846868779409766717133476767930 X 5920175091777634709677679342929097012308956679993010921

Runtime for standard algorithm to multiply two n digit numbers:

Recursive Multiplication Algorithm (First attempt)

$$x = x_1 2^{n/2} + x_0$$

$$y = y_1 2^{n/2} + y_0$$

$$xy = (x_1 2^{n/2} + x_0) (y_1 2^{n/2} + y_0)$$

$$= x_1 y_1 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0$$

Recurrence:

Run time:

Simple algebra

$$x = x_1 2^{n/2} + x_0$$

$$y = y_1 2^{n/2} + y_0$$

$$xy = x_1 y_1 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0$$

$$p = (x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$$

Karatsuba's Algorithm

Multiply n-digit integers x and y

Let $x = x_1 2^{n/2} + x_0$ and $y = y_1 2^{n/2} + y_0$ Recursively compute $a = x_1y_1$ $b = x_0y_0$ $p = (x_1 + x_0)(y_1 + y_0)$ Return $a2^n + (p - a - b)2^{n/2} + b$

Recurrence: T(n) = 3T(n/2) + cn

log₂3=1.58496250073...