CSE 417
Algorithms and Complexity

Announcements

Midterm stats (out of 60)
— Mean: 40.46, Median: 42.0, Std Dev: 11.23

Today: Divide and Conqg
Friday: Dynamic Programming
Monday: Presidents’ Day

Divide and Conquer

e Algorithm paradigm

— Break problems into subproblems until easy to
solve

— Work is split between “divide”, “combine”, and
“base’”” components

e Standard examples
— MergeSort and QuickSort

* Analysis tool: Recurrences

Matrix Multiplication

* NXN Matrix, AB=C

for (int 1 = 0; i < n; 1i++)
for (int j = 0; Jj < n; j++) {
int £t = 0;
for (int k = 0; k < n; k++)
t =t + A[1] [k] * B[k][]J]’

Cli][]] = &;

Recursive Matrix Multiplication

Multiply 2 x 2 Matrices:

lr s|_la bl |e g
|t u| |c d| |f hi
r =ae + bf
S =ag + bh
t = ce+df
u= cg+dh

A N x N matrix can be viewed as
a 2 X 2 matrix with entries that
are (N/2) x (N/2) matrices.

The recursive matrix
multiplication algorithm
recursively multiplies the
(N/2) x (N/2) matrices and
combines them using the
equations for multiplying 2 x 2
matrices

Recursive Matrix Multiplication

How many recursive calls are
made at each level?

How much work in
combining the results?

What is the recurrence?

What is the run time for the recursive Matrix
Multiplication Algorithm?

e Recurrence:

Strassen’s Algorithm

Where:

Multiply 2 x 2 Matrices:
p, = (b—d)(f+h)

lr s|_la bl e g

|t ul [c d| [T h p,= (a + d)(e + h)
ps= (a—c)(e +g)

=P ¥ P2—Pst Pg p,= (a + b)h

S =Ps*Ps ps=a(g — h)

t=ps+ Py ps=d(f—e)

U=p,-P3+Ps-p; p-=(c +d)e

From Aho, Hopcroft, Ullman 1974

Recurrence for Strassen’s Algorithms

* T(n)=7T(n/2) + cn?
e What is the runtime?

log, 7 = 2.8073549221

Strassen’s Algorithms

Treat n x n matrices as 2 x 2 matrices of n/2 x n/2
submatrices

Use Strassen’s trick to multiply 2 x 2 matrices with 7
multiplies

Base case standard multiplication for single entries
Recurrence: T(n) =7 T(n/2) + cn?
Solution is O(7'°8")= O(n'°8 /) which is about O(n2:8%7)

Inversion Problem

Leta,, ...a,beapermutationofl..n
(a;, 3;) is aninversion if i <jand a; > 3,

4,6,1,7,3,2,5

Problem: given a permutation, count the number of
Inversions

This can be done easily in O(n?) time

— Can we do better?

Application

* Counting inversions can be use to measure
how close ranked preferences are
— People rank 20 movies, based on their rankings

you cluster people who like that same type of
movie

Counting Inversions

11

12

-

2

3

15

9

5

16

8

6

13

10

14

Count Inversions on lower half

Count inversions on upper half

Count the inversions between the halves

Count the Inversions

: o o
11 (12 |4 4 15 5 |16 6 13110 |14
o) ©
11 |12 |4 ! 15 9 |5 (16 6 |13 (10 |14
)

44 @
11 |12 1 15|19 |5 |16 |8 |6 |13 |10 |14

Problem — how do we count inversions between

* Solution — Count inversions while merging

sub problems in O(n) time?

12

15

10

13

14

16

Standard merge algorithm — add to inversion count

when an element is moved from the upper array to the

solution

Use the merge algorithm to count
Inversions

Indicate the number of inversions for each
element detected when merging

Inversions

e Counting inversions between two sorted lists
— O(1) per element to count inversions

! 1

X | X [X | X | X | X | X |X Yy Iy |y |y |y

Y4 y4 y4 Y4 Y4 Y4 Y4 y4 Y4 Y4 Y4 y4 y4 Y4

e Algorithm summary

— Satisfies the “Standard recurrence”
— T(n) =2 T(n/2) + cn

Computing the Median

* Given n numbers, find the number of rank n/2

 One approach is sorting
— Sort the elements, and choose the middle one
— Can you do better?

e Selection, given n numbers and an integer k,
find the k-th largest

Select(A, k)

Select(A, k1
Choose element x from A
S;={yinAly<Xx}
S,={yinA|y>x}
S;={yInAly =X}
It (IS, >= k)
return Select(S,, k)
else if (|S,] + |S3| >= k)
return x
else
return Select(S;, k - |S,| - |S;))

2/15/2023 CSE 417

19

Deterministic Selection

e What is the run time of select if we can

guarantee that choose finds an x such that
|S;| <3n/4 and |S,| <3n/4in O(n) time

 What is the run time of select if we can
guarantee that choose finds an x such that
|S;] <3n/4 and |S,| <3n/4 in O(n) time

BFPRT Algorithm

* Avery clever choose algorithm . ..

* Deterministic algorithm that guarantees
that |S,| <3n/4and |S,| <3n/4

e Actual recurrence is:

T(n) =T(3n/4) + T(n/5) + cn

http://en.wikipedia.org/wiki/File:VaughanPratt.JPG

Integer Arithmetic

9715480283945084383094856/7/01043643845790217965702956767
+ 1242431098234099057329075097179898430928779579277597977

Runtime for standard algorithm to add two n digit numbers:

2095067093034680994318596846868/779409/66/7/171334767/67930
X 592017509177763470967/7/679342929097/012308956679993010921

Runtimedar standard algorithm to multiply-twe:n digit numbers:

Recursive Multiplication Algorithm (First
attempt)

X = X, 2M2 + X,

y =Y;2"2 +y,
Xy = (X122 + Xg) (Y1 22 + y,)

= X1Y1 2" + (X1Yo + Xg¥Y1)2"% + XoYo

Recurrence:

Run time:

Simple algebra

— /2
X = Xq 2" + X,
Yy =Yy12"2 + Y,

Xy = X1Yq 2"+ (XY *+ XoY1) 22 + XgYo

P = (Xy + Xg)(Y1 * Yo) = X1Y1 + XY + XoY1 + Xo¥o

Karatsuba’s Algorithm

Multiply n-digit integers x and y

Let X=X, 22 +x,and y=y, 2V? +y,
Recursively compute

a=XiY1

b = XoYo

P = (Xy + %) (Y1 * Yo)
Return a2"+ (p—a—b)2"2 + b

Recurrence: T(n) = 3T(n/2) + cn

log, 3 = 1.58496250073...

