

Announcements

- Homework 6, Due Friday, Feb 17
$210 / 2023$ CSE 417

Divide and Conquer

- Recurrences, Sections 5.1 and 5.2
- Algorithms
- Median (Selection)
- Fast Matrix Multiplication
- Counting Inversions (5.3)
- Multiplication (5.5)

Algorithm Analysis

- Cost of Merge
- Cost of Mergesort

Divide and Conquer : Merge Sort

Array Mergesort(Array a)\{
$\mathrm{n}=\mathrm{a}$.Length;
if $(\mathrm{n}<=1$)
return a;
$b=$ Mergesort(a[0 .. $n / 2]$);
$\mathrm{c}=$ Mergesort(a[n/2+1 .. $\mathrm{n}-1]$);
return Merge(b, c);
\}

2/10/2023
CSE 417

Recurrence Analysis

- Solution methods

- Unrolling recurrence
- Guess and verify
- Plugging in to a "Master Theorem"

$T(n)=2 T(n / 2)+n ; T(1)=1 ;$

Substitution

Prove $T(n)<=n\left(\log _{2} n+1\right)$ for $n>=1$
Induction:
Base Case:

Induction Hypothesis:

2/10/2023
CSE 417

Unroll recurrence for $T(n)=3 T(n / 3)+n$

A better mergesort (?)

- Divide into 3 subarrays and recursively sort
- Apply 3-way merge

$$
T(n)=a T(n / b)+f(n)
$$

$$
T(n)=T(n / 2)+c n
$$

Where does this recurrence arise?

The steps of Quicksort

Recurrence for Quicksort
$Q S(n)=\sum_{i=1}^{n} \frac{1}{n}\{Q S(i-1)+Q S(n-i)\}$

Picking the pivot

- Choose the first element in the subarray
- Choose a value that might be close to the middle
- Median of three
- Choose a random element

Computing the Median

- Given n numbers, find the number of rank $\mathrm{n} / 2$
- One approach is sorting
- Sort the elements, and choose the middle one
- Can you do better?

Problem generalization

- Selection, given n numbers and an integer k , find the k-th largest

Select(A, k)

Select(A, k) \{
Choose element x from A
$S_{1}=\{y$ in $A \mid y<x\}$
$S_{2}=\{y$ in $A \mid y>x\}$
$S_{3}=\{y$ in $A \mid y=x\}$
if ($\left|S_{2}\right|>=k$)
return Select($\left.\mathrm{S}_{2}, \mathrm{k}\right)$
else if $\left(\left|S_{2}\right|+\left|S_{3}\right|>=k\right)$
else
return x
\}

\section*{| S_{1} | $\mathrm{~S}_{3}$ |
| :--- | :--- |}

Randomized Selection

- Choose the element at random

$$
T(n)=T(n / 2)+c n
$$

Where does this recurrence arise?

- Analysis can show that the algorithm has expected run time $O(n)$

1402023	

Solving the recurrence exactly

Recurrences

- Three basic behaviors
- Dominated by initial case
- Dominated by base case
- All cases equal - we care about the depth

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing ($x>1$)
- The bottom level wins
- Geometrically decreasing ($x<1$)
- The top level wins
- Balanced ($x=1$)
- Equal contribution
$T(n)=2 T(n / 2)+n^{1 / 2}$

2/10/2023

Classify the following recurrences
(Increasing, Decreasing, Balanced)

- $T(n)=n+5 T(n / 8)$
- $T(n)=n+9 T(n / 8)$
- $T(n)=n^{2}+4 T(n / 2)$
- $T(n)=n^{3}+7 T(n / 2)$
- $T(n)=n^{1 / 2}+3 T(n / 4)$

